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19.1. INTRODUCTION

Tropical cyclones (TC) are severe weather events that 
form in many parts of the tropics and impact continents 
including North America, Asia, Australia, and Africa. 
The damage caused by tropical cyclones can be cata­
strophic, and will only increase as coastal developments 
expand and populations grow [Mendelsohn et al., 2012; 

Peduzzi et al., 2012]. Improving our ability to predict sea­
sonal tropical cyclone activity is one way to mitigate this 
increase in damage [DeMaria et al., 2014].

The tropical climate system influences atmospheric 
dynamics and sea surface temperature (SST) anomaly 
patterns in all TC basins. Therefore, the climate system 
affects the strength of the hurricane seasons throughout 
the world. Because of this climate influence, some level of 
seasonal predictive skill is being achieved for most hurri­
cane basins.

This chapter focuses on seasonal predictions of North 
Atlantic hurricane activity. The North Atlantic hurricane 
season lasts for 6 months from 1 June to 30 November. 
The season has a well‐defined 3 month peak of August‐
September‐October (ASO), during which 77% of all 
named storms, 84% of all hurricanes, and 93% of all 
major hurricanes have formed (1950–2014 data).
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ABSTRACT

Statistically based seasonal hurricane outlooks for the North Atlantic were initiated by Colorado State University 
(CSU) in 1984, and have been issued every year since that time by CSU. The National Oceanic and Atmospheric 
Administration (NOAA) Climate Prediction Center and the UK‐based Tropical Storm Risk (TSR) have the 
next longest records (1998‐present) of continuous outlooks. This chapter describes how these three forecasts 
have evolved with time, and documents the approaches, the environmental fields, and the lead times which 
underpin the models’ operation. Some of the environmental parameters used in early seasonal outlooks are no 
longer employed, but new predictive fields have been found that appear to be more important for seasonal hur­
ricane prediction. An assessment is made of the deterministic skill of the seasonal hurricane outlooks issued in 
real time by CSU, NOAA, and TSR between 2003 and 2014. All methods show moderate‐to‐good skill for early 
August outlooks (prior to the most active portion of the hurricane season), low‐to‐moderate skill for outlooks 
issued in early June, and lesser skill for outlooks issued in early April. Overall, the TSR model has the most skill­
ful predictions of Accumulated Cyclone Energy (ACE), while NOAA has the best named storm predictions 
issued in early August.
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Atlantic hurricane seasons feature large year‐to‐year 
and decade‐to‐decade fluctuations in strength, primarily 
in response to differing amounts of activity during ASO. 
Figure 19.1 shows the set of conducive conditions within 
the Atlantic hurricane Main Development Region (MDR) 
during ASO that produce a more active Atlantic hurri­
cane season. Opposite conditions suppress hurricane for­
mation and intensification in the MDR and produce a 
less active season. Gray [1984a, b], Bell and Chelliah 
[2006], and others have linked active and inactive hurri­
cane seasons to seasonal fluctuations in oceanic and 
atmospheric conditions during ASO within the MDR 
(yellow box in Fig. 19.1), which spans the tropical North 
Atlantic Ocean and Caribbean Sea [Goldenberg et  al., 
2001]. Such fluctuations often have strong climate links 
and involve a set of interrelated parameters, including 
SSTs, trade wind strength, vertical wind shear, atmos­
pheric stability, and the strength of the west African 
monsoon. Therefore, above‐normal and below‐normal 
Atlantic hurricane seasons are typically not random 
occurrences. Instead, they often reflect a strong climate 
influence over a set of atmospheric and oceanic condi­
tions within the MDR, which then collectively determine 
the overall strength of the hurricane season.

The seasonal hurricane outlooks are designed primarily 
to predict oceanic and atmospheric conditions within the 
MDR during ASO. Two large‐scale climate phenomena, 
the El Niño–Southern Oscillation (ENSO) and the Atlantic 
Multidecadal Oscillation (AMO) account for much of 
the coherent variability observed across the MDR in the 
atmosphere and ocean on both interannual and multidec­
adal time scales [Goldenberg et al., 2001; Bell and Chelliah, 

2006]. This high degree of control exerted by the tropical 
climate system on Atlantic hurricane activity provides the 
underlying scientific basis for making seasonal Atlantic 
hurricane outlooks. Studies have established that by moni­
toring, understanding, and predicting these climate pat­
terns and their associated regional circulation features, it is 
often possible to confidently predict the nature of the 
upcoming hurricane season.

One benefit of issuing seasonal outlooks is to anticipate 
the likelihood of extreme events. While weak tropical 
storms can form in marginally favorable environments, a 
set of very conducive conditions (Fig. 19.1) is required to 
produce powerful hurricanes and an exceptionally active 
season. Seasonal prediction models typically forecast an 
aggregate measure of overall seasonal activity such as the 
accumulated cyclone energy (ACE) index [Bell et  al., 
2000]. The ACE index measures the combined intensity 
and duration of all named storms during the season, and 
it is therefore a measure of the overall strength of the 
hurri cane season. ACE correlates strongly with major 
hurricanes (Category 3–5 on the Saffir‐Simpson wind 
scale). For example, in seasons classified as below normal 
(<66 ACE units) by NOAA since 1966 (when daily geosta­
tionary satellite data became available), an average of 0.9 
major hurricanes formed, compared with 3.9 major hurri­
canes in above‐normal seasons (> 111 ACE units). This 
4:1 ratio is especially important when one considers 
that major hurricanes cause approximately 80%–85% of 
TC‐related damage on an annual basis [Pielke et al., 2008].

This chapter evaluates the three longest‐lived outlooks 
for North Atlantic hurricane activity. In order of longev­
ity, these outlooks have been issued by Colorado State 

Figure  19.1 Schematic of atmospheric and oceanic anomalies during August–October associated with active 
Atlantic hurricane seasons and decades. Adapted from Bell and Chelliah [2006]. (See insert for color representation 
of the figure.)
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University (CSU), the National Oceanic and Atmospheric 
Administration (NOAA), and Tropical Storm Risk (TSR). 
CSU started disseminating operational seasonal hurri­
cane outlooks in 1984. NOAA’s seasonal outlooks started 
in August 1998, and TSR began publishing seasonal 
 outlooks in December 1998. Successful predictions of 
Atlantic basin seasonal hurricane activity are now also 
being made by dynamical models, such as those issued by 
the European Centre for Medium Range Weather 
Forecasts (ECMWF) [Vitart and Stockdale, 2001] and the 
UK Met Office [Camp et al., 2015].

Building upon Klotzbach [2007], this chapter provides 
an updated review of statistically based seasonal hurri­
cane outlooks for the North Atlantic basin, including 
an assessment of their skill. Section 19.2.1 summarizes 
the initial prediction scheme used by CSU in 1984. 
Section 19.2.2 discusses the development of CSU’s sea­
sonal hurricane outlooks since 1984. Section  19.2.3 
describes the evolution of NOAA’s outlooks since their 
original issuance in 1998. Section 19.2.4 provides a dis­
cussion of prediction development from TSR since 1999. 
In section 19.2.5, the real‐time outlook skill of the three 
forecast models is evaluated and compared for the period 
2003–2014. Potential future improvements to the statisti­
cal models are discussed in section 19.2.6. Section 19.3 
concludes the chapter.

19.2. STATISTICALLY BASED SEASONAL 
HURRICANE OUTLOOK MODELS

The reason why the North Atlantic was chosen in 1984 
for the first statistically based seasonal tropical cyclone 
outlook for the Northern Hemisphere was the greater year‐
to‐year variability in TC activity present in this basin com­
pared to the northeast Pacific or northwest Pacific basins 
[Gray, personal communication]. Based on 1986–2005 data, 
the coefficient of variation (the ratio of the standard devia­
tion to the mean) is nearly twice as large for the Atlantic as 
for the northeast Pacific and about three times as large for 
the Atlantic as for the northwest Pacific [Klotzbach, 2007].

19.2.1. Early Research and Outlooks

Before 1984 there was little way of knowing how active 
an upcoming hurricane season would be. CSU issued the 
first statistically based seasonal hurricane outlooks for 
the North Atlantic basin in 1984 [Gray, 1984b]. Since 
then, the CSU outlooks have evolved and are currently 
available at http://tropical.colostate.edu. Early outlooks 
for the Atlantic basin were issued in June and updated in 
August. These outlooks utilized current and predicted 
strengths and phases of  two large‐scale climate phenom­
ena: ENSO and the Quasi‐Biennial Oscillation (QBO) 
[Gray, 1984a], along with forecasts of  Caribbean basin 

sea level pressure (SLP). Figure 19.2 shows the six sta­
tions utilized to estimate Caribbean basin SLP anoma­
lies. When an El Niño event was present, the predicted 
level of  Atlantic hurricane activity was reduced, while 
both ENSO‐neutral and La Niña events were treated 
equally. If  the QBO was in its easterly phase at 30 hPa, or 
if  the 30 hPa winds were increasing from the east, the 
predicted level of  hurricane activity was reduced. If  the 
QBO was in its westerly phase or the 30 hPa winds were 
increasing from the west, a stronger hurricane season 
was predicted. If  SLP in the Caribbean basin was below 
average, a stronger hurricane season was predicted; and 
if  SLP in this region was above average, a weaker hurri­
cane season was predicted. This initial model showed 
considerable hindcast skill. The correlation between 
hindcast and observed named storms (tropical storms 
and hurricanes combined) was 0.82 for the period 1950–
1982 (Fig. 19.3), and the correlation for hurricanes alone 
was 0.77.

19.2.2. CSU Model Development: 1984–Present

CSU’s outlooks have undergone significant evolution 
since their original release. CSU began releasing early 
December predictions in 1990, while continuing to issue 
both June and August outlooks. Gray et al. [1992, 1993, 
1994] detail the CSU prediction models used in the early 
1990s. Figure 19.4 displays the predictors utilized in the 
early 1990s for their early August prediction scheme.

While all of CSU’s seasonal outlooks still retain an 
ENSO component, other predictors have been added or 
removed over the years. For example, the models used in 
the early 1990s included new predictors that were closely 
related to West African rainfall. As discussed by Landsea 
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Figure 19.2 Locations of six stations used to estimate Caribbean 
basin sea level pressure anomalies in the original CSU outlook. 
From Gray [1984b].
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and Gray [1992], when rainfall in the western Sahel is 
enhanced during June–July, Atlantic hurricane seasons 
tend to be more active. A stronger West African mon­
soon is associated with stronger and better defined 
 easterly waves, weaker vertical wind shear, and warmer 
SSTs in the MDR, all of  which favor more frequent and 
more intense tropical storms and hurricanes [Bell 
and  Chelliah, 2006]. In addition, Landsea and Gray 
[1992] found a significant relationship between Gulf  of 
Guinea rainfall during August–November and Atlantic 

hurricanes the following year. This relationship was a 
key predictor in CSU’s original early December predic­
tion model. Figure  19.5 displays the tracks of  major 
hurricanes during the 10 wettest versus 10 driest years 
for the Gulf  of  Guinea region during the period from 
1949 to 1989.

In the mid‐1990s, the development of the NCEP/
NCAR Reanalysis products [Kistler et al., 2001] led to a 
transition from station‐based predictors to grid‐based 
predictors. In addition, the failure of previously used 
 predictors, such as the QBO [Camargo and Sobel, 2010] 
and direct African rainfall measurements [Klotzbach and 
Gray, 2004] caused CSU to investigate other climate pre­
dictors. These failures also illustrated the challenges of 
making seasonal outlooks in an inherently nonstationary 
climate system.

While original forecast models were constructed using 
limited data (e.g., 1950–1980), longer periods of  hind­
cast data are now available. In addition, with the devel­
opment of  the Twentieth Century Reanalysis [Compo 
et al., 2011], a full three‐dimensional realization of  the 
atmosphere is now available back to 1851. Obviously, as 
one goes back in time, there is increased uncertainty 
both in atmospheric parameters and levels of  hurricane 
activity. However, being able to evaluate predictor skill 
over 100+ years of  prior data helps to avoid some of  the 
pitfalls associated with predictor screening [DelSole and 
Shukla, 2009].

CSU discontinued its December outlooks following the 
2011 hurricane season due to a lack of real‐time predic­
tive skill. The project currently issues outlooks in April, 
June, July, and August [Klotzbach, 2014]. Figure 19.6 dis­
plays the three predictors currently used in CSU’s early 
August outlook.

As indicated, the CSU outlooks now utilize the low‐
level wind flow across the Caribbean Sea as an important 
predictor. Using the ERA‐Interim Reanalysis [Dee et al., 
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Figure 19.3 Hindcast skill based on the period 1950–1982 of 
the original early August outlook issued by CSU. The correlation 
(r) between the hindcast and observed number of hurricanes 
and tropical storms combined is 0.82. From Gray [1984b].
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Figure 19.4 Predictors utilized by CSU in the early 1990s for their August seasonal outlook. Labels not mentioned 
in the text include (1) the Southern Oscillation Index, which is used to monitor ENSO and is a measure of the 
anomalous sea‐level pressure difference between Darwin, Australia, and Tahiti, and (2) the Niño‐3 region, which 
is an important area of the tropical Pacific used to monitor ENSO. Adapted from Gray et al. [1993].
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Figure 19.5 Tracks of major hurricanes in the year following the 10 wettest August–November periods in the Gulf 
of Guinea (top panel) and the 10 driest August–November periods from 1949–1989. This finding was why the previ-
ous August–November Gulf of Guinea rainfall was utilized in the initial early December outlook scheme issued by 
CSU. The seasonal mean is the average number of major hurricane days per year. From Gray et al. [1992].
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Figure 19.6 Location of predictors for CSU outlooks currently being issued in early August.
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2011], July Caribbean trade winds correlate with post‐1 
August ACE at 0.78. This predictor had previously been 
noted by Saunders and Lea [2008] to explain a significant 
amount of variability of Atlantic TC activity. Indeed, 
TSR has used the predicted speed of the August‐
September Caribbean trade winds as one of its two main 
predictors for seasonal hurricane activity since 2001.

This trade‐wind predictor is important because it is 
associated with a set of conditions which together influ­
ence Atlantic hurricane activity. For example, reduced 
trade wind strength over the Caribbean Sea implies 
higher than normal pressure in the eastern tropical 
Pacific, which is typically associated with La Niña condi­
tions. Weaker trade winds are also typically associated 
with warmer than normal conditions in the tropical 
Atlantic and Caribbean Sea, along with an expanded 
Atlantic warm pool [Wang and Lee, 2007]. A larger warm 
pool generates a more conducive dynamic and thermody­
namic environment for TC genesis and intensification.

Another predictor currently used by CSU is the SST 
anomaly in the northeastern subtropical Atlantic. The 
Atlantic tends to be more active when SSTs in this 
region are warmer than normal prior to the peak of  the 
hurricane season [Klotzbach, 2011, 2014], likely because 
these warm anomalies tend to get advected into the 
Atlantic by the peak of  the hurricane season [Smirnov 
and Vimont, 2012]. Additionally, warmer temperatures 
in this region are typically associated with weaker trade 
winds and a more conducive configuration of  the 
African Easterly Jet (AEJ) during the peak months of 
the hurricane season.

19.2.3. NOAA Model Development: 1998–Present

NOAA’s seasonal hurricane outlooks for the North 
Atlantic basin are an official product of the Climate 
Prediction Center and are made in collaboration with 
NOAA’s National Hurricane Center and Hurricane 
Research Division. NOAA began issuing seasonal hurri­
cane outlooks in August 1998. The outlooks, beginning 
with May 1999, are archived at www.cpc.ncep.noaa. 
gov/products/outlooks/hurricane‐archive.shtml. These out­
looks provide a general guide to the expected strength of 
the upcoming hurricane season. They are not a seasonal 
hurricane landfall outlook, and do not imply levels of 
activity for any particular location. NOAA’s initial sea­
sonal hurricane outlook is issued in late May and is then 
updated in early August.

For the outlooks issued from August 1998 to May 
2000, NOAA indicated only the most likely season 
strength. Since August 2000, the outlooks have indicated 
the probabilities for the three season classifications: 
above, near, and below normal, as defined at www.cpc.nce.
noaa.gov/products/outlooks/background_information.

shtml#NOAADEF. Since August 2001, the outlooks 
have also include probabilistic statements for the likely 
ranges of named storms, hurricanes, major hurricanes, 
and ACE. However, there was flexibility during 2001–
2002 in what was referred to as a “likely” range. Since 
May 2003, the likely ranges of activity have been speci­
fied with an estimated 70% probability of occurrence.

NOAA’s seasonal hurricane outlooks reflect predic­
tions of the combined impacts of three climate factors: 
ENSO [Gray, 1984a; Goldenberg and Shapiro, 1996], the 
AMO [Gray et  al., 1996; Landsea et  al., 1999], and the 
tropical multidecadal signal (TMS) [Bell and Chelliah, 
2006]. The TMS is the leading multidecadal mode of 
tropical convective variability, and it captures the 
observed link between multidecadal fluctuations in 
Atlantic SSTs (i.e., the AMO), the West African mon­
soon system [Hastenrath 1990; Gray, 1990; Landsea and 
Gray, 1992; Landsea et al., 1992; Goldenberg and Shapiro, 
1996], and Amazon basin rainfall [Chen et al., 2001; Chu 
et al., 1994]. Together, these climate factors produce the 
interrelated set of atmospheric and oceanic conditions 
typically associated with both seasonal and multidecadal 
fluctuations in Atlantic hurricane activity (Fig. 19.1).

Three types of forecast tools provide guidance for the 
outlooks [Bell and Blake, 2015]. These include statistical 
tools, a hybrid statistical/dynamical ensemble forecast 
technique based on the NOAA Climate Forecast System 
(CFS) Version‐2 (T‐128), and purely dynamical model 
ensemble forecasts from the CFS high‐resolution (T‐382) 
model, the NOAA Geophysical Fluid Dynamics 
Laboratory (GFDL), the ECMWF, and the European 
Seasonal to Interannual Prediction (EUROSIP) model 
(Fig. 19.7). The updated outlook issued in August also 
incorporates predictive information such as anomalous 
early season activity and atmospheric and oceanic anom­
alies that may have developed which are not related to the 
dominant climate predictors.

One statistical prediction technique utilizes linear mul­
tiple regression equations to first establish the historical 
relationship between seasonal activity and the combined 
effects of the above climate factors. Forecasts of these cli­
mate factors are then input into the regression equations 
to predict the upcoming seasonal activity. In practice, the 
regression results for each prediction parameter are 
assembled into a look‐up table [Bell and Blake, 2015], 
allowing forecasters to quickly assess a likely range of 
activity given uncertainties in the climate prediction itself. 
A second statistical technique uses climate‐based ana­
logues, which provide the forecaster with the observed 
ranges of activity in past seasons having similar climate 
conditions to those currently being predicted.

The hybrid statistical‐dynamical technique [Wang 
et al., 2009] uses regression equations to relate historical 
CFS‐V2 model forecasts of anomalous seasonal Atlantic 
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SSTs and vertical wind shear to the observed seasonal 
hurricane activity in that year. The results are used to 
quantify the observed ranges of activity during past sea­
sons having model predictions similar to the present.

One purely dynamical forecast tool in use since 2008 is 
the set of ensemble forecasts obtained from the CFS high‐
resolution model [Schemm and Long, 2009]. This tool pro­
vides guidance to the seasonal hurricane outlooks in three 
main ways. First, it aids in the prediction of the climate pre­
dictors themselves. Second, it aids in predicting the strength 
of the regional circulation anomalies associated with those 
climate predictors, which is especially important when there 
are competing climate factors or when there is an expecta­
tion for a significant evolution in those climate factors (such 
as ENSO) as the season progresses. Third, the model pro­
vides independent, bias‐corrected predictions of seasonal 
activity based purely on model‐generated hurricane tracks. 
Along similar lines, in 2010 the outlooks also began taking 
into account ensemble dynamical model predictions 
obtained from the GFDL, the ECMWF and the EUROSIP.

To arrive at the final seasonal hurricane outlook, all 
predicted ranges obtained from the various prediction 
tools are first assembled. Consensus guidance outlook 
ranges are then obtained by averaging separately, over all 
the prediction tools, the lower bounds and the upper 
bounds of the predicted ranges. The individual team 

forecasters then use this guidance to make predictions for 
the likely ranges of activity (~70% confidence) for each 
prediction parameter. The final Atlantic outlook reflects 
a consensus of these individual forecaster predictions.

19.2.4. TSR Model Development: 1999–Present

Tropical Storm Risk (TSR), based at University 
College London in the United Kingdom, has issued pub­
lic outlooks for seasonal TC activity in the North Atlantic 
since December 1998. The TSR venture developed from a 
UK government‐supported initiative called TSUNAMI, 
which ran from 1998 to 2000, and whose aim was to assist 
the competitiveness of the UK insurance industry.

TSR predicts basin‐wide TC activity (namely numbers 
of storms of different strengths and the ACE index), U.S. 
landfalling TC activity, and Caribbean Lesser Antilles 
landfalling TC activity. Outlooks are issued in determin­
istic and tercile probabilistic form. The TSR prediction 
models are statistical in nature, but are underpinned by 
predictors that have sound physical links to contempora­
neous TC activity. TSR issues seasonal outlooks in early 
December, April, June, July and August. All historical 
TSR seasonal TC outlooks are available online at www.
tropicalstormrisk.com/forecasts.html, thereby allowing 
assessments to be made of the TSR real‐time forecast 
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skill. However, during the period from December 1998 
through 2001 the TSR seasonal forecast models and their 
lead times of issuance were evolving. For a consistent 
assessment of TSR prediction skill at set lead times, it is 
recommended to use only outlooks starting with the 2002 
hurricane season. TSR also provides within its seasonal 
outlooks the hindcast precision of each outlook param-
eter assessed over a prior 35 year period.

The TSR seasonal hurricane forecast model is sophisti-
cated for a statistical model. The model divides the North 
Atlantic hurricane basin into three regions: (1) the tropi-
cal North Atlantic, (2) the Caribbean Sea and Gulf of 
Mexico, (3) the remainder of the North Atlantic outside 
regions (1) and (2). TSR employs separate outlook mod-
els for each of the three regions before summing the 
regional hurricane outlooks to obtain an overall North 
Atlantic hurricane outlook.

For regions (1) and (2), the model pools different 
 environmental fields involving predictions of August‐
September SST anomalies and July–September trade 
wind speed to select the environmental field or combina-
tion of two fields, which gives the highest replicated real‐
time skill for individual predictands (number of tropical 
storms, number of hurricanes, number of major hurri-
canes, and ACE index) over the prior 10 year period. The 
nature of this process means that the details of the sea-
sonal forecast model can vary subtly: (1) between indi-
vidual predictands at the same lead time for a given year, 
(2) with lead time for the same predictand during the same 
year, and (3) from year‐to‐year for the same predictand at 
the same lead time. Separate forecast models are employed 

to predict: (1) July–September trade wind speed; (2) 
August–September SST anomalies for different regions 
in  the tropical North Atlantic and Caribbean Sea; and 
(3) August–September SST anomalies for different Niño 
regions [Lloyd‐Hughes et al., 2004]. Finally, bias correc-
tions are employed for each predictand based on the per-
formance of that predictand over the prior 10 years.

Two environmental fields stand out among the fields 
that the TSR model pools in making its selection 
described above. These fields are (1) predicted speed of 
the trade winds for July‐August‐September for the 
region 7.5°– 17.5°N, 100°W– 30°W. The trade winds blow 
westward across the tropical Atlantic and Caribbean Sea 
and influence cyclonic vorticity and vertical wind shear 
over the MDR. (2) Predicted SST anomaly for August– 
September for the region 10°– 20°N, 60°W– 20°W 
between West Africa and the Caribbean, which includes 
the central and eastern MDR where many hurricanes 
develop during August and September. Waters here pro-
vide heat and moisture to help power the development of 
storms within the MDR. The nature of these two envi-
ronmental fields and their anomalies, which are linked to 
active hurricane seasons, is shown in Figure 19.8. Further 
information on the TSR outlooks for North Atlantic TC 
activity and its underpinning methodology is described in 
Lea and Saunders [2004, 2006], Saunders [2006], and 
Saunders and Lea [2008].

TSR outlooks for US landfalling TC activity issued 
between December and July employ a historical thinning 
factor between tropical North Atlantic activity and US 
landfalling activity. The TSR outlook for US landfalling 
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activity issued in early August employs the persistence of 
July steering winds [Saunders and Lea, 2005]. These winds 
either favor or hinder evolving hurricanes from reaching 
US shores during August and September. This model 
correctly anticipates whether US hurricane losses are 
above median or below median in ~75% of the years 
between 1950 and 2013. For the US ACE index, the TSR 
prediction skill increases from 3% (prior December) to 
29% (early August) for the period 1980–2013.

19.2.5. Assessment of Seasonal Hurricane Outlook 
Skill: 2003–2014

An assessment and intercomparison of the real‐time 
forecast skill of the CSU, NOAA, and TSR hurricane 
outlooks is performed for the 12 year period 2003–2014. 

This period is chosen because the forecast methodologies 
employed by each group have remained relatively stable 
over this period (see sections 19.2.2, 19.2.3, and 19.2.4), 
and because these outlooks are available and archived on 
their public websites.

The deterministic August outlooks for the four main 
measures of hurricane activity, ACE, major hurricane 
numbers, hurricane numbers, and named storm numbers, 
that were issued by each forecast group during 2003–2014 
are shown in Figure  19.9. Since NOAA does not issue 
deterministic outlook values, but instead issues an out­
look range having a 70% probability of occurrence, the 
midpoint of their outlook range is used as a proxy for 
their deterministic value.

Notable forecast successes are evident (e.g., 2005, 2010, 
and 2014) as well as forecast failures (e.g., 2007 and 2013). 
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Figure 19.9 Time series comparing the seasonal outlook values issued in early August 2003–2014 by CSU, TSR, 
and NOAA with observed values. The comparison is made for (a) ACE, (b) major hurricane numbers, (c) hurricane 
numbers, and (d) named storm numbers. (See insert for color representation of the figure.)
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The 12 year period includes the most active hurricane 
season on record (2005) as well as the quietest hurricane 
season since the early 1980s (2013). Thus, although the 
assessment period is relatively short, it provides a reason­
able test of outlook performance.

The skill assessment and comparison are made sepa­
rately for the four main measures of hurricane activity, 
and separately for the three outlook issue times of early 
April, early June (at the start of the official hurricane sea­
son), and early August (just prior to the main part of the 
hurricane season). It should be noted that only CSU and 
TSR issue outlooks in early April and that the NOAA 
outlook issued in late May is treated here as an early June 
outlook.

The assessment examines two measures of determinis­
tic outlook skill. The first is the Spearman rank correla­
tion (rrank), which is a robust and resistant alternative to 
the Pearson product‐moment correlation coefficient 
[Wilks, 2006]. The second skill measure is the mean 

square skill score (MSSS), defined as the percentage 
reduction in mean square error of the outlooks compared 
with outlooks made with a climatological mean. MSSS is 
the skill metric recommended by the World Meteorological 
Organization (WMO) for verification of deterministic 
seasonal outlooks [WMO, 2002; also see Déqué, 2003]. 
The MSSS is calculated here with respect to two different 
climatologies: a fixed 1951–2000 mean and a rolling prior 
10 year mean. A prior 10 year mean is used, instead of 
the prior 5 year mean recommended by the WMO 
[WMO, 2008], because the 10 year mean is found to be a 
tougher benchmark to beat for all measures of hurricane 
activity.

Figures 19.10 and 19.11 display the real‐time skill of 
the seasonal hurricane outlooks computed for the differ­
ent lead times and activity measures. Figure 19.10 shows 
the skill using the Spearman rank correlation (rrank), and 
Figure 19.11 shows the skill using the mean square skill 
score (MSSS). The findings from these two skill 
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Figure 19.10 Skill of North Atlantic seasonal hurricane outlooks from 2003–2014 assessed using the Spearman 
rank correlation (rrank) between the forecast and observed values. The assessment is made for (a) ACE, (b) major 
hurricane numbers, (c) hurricane numbers, and (d) named storm numbers. In each case the rrank values are com-
puted for CSU, TSR, and NOAA seasonal outlooks issued at lead times of early August, early June, and early April.
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assessments are similar. For all models, the August out­
looks are by far the most skillful, and the April outlooks 
are the least skillful. Overall, the TSR model is the most 
skillful predictor of the ACE index and is also the most 
skillful pre­season and early‐season predictor for hurri­
cane numbers. The NOAA model has the best August 
prediction for named storm numbers.

Benchmark skill values were then obtained by identify­
ing the best performing statistical outlook model for each 
measure of hurricane activity based on the MSSS scores. 
The benchmark MSSS skill values for ACE, major hur­
ricane numbers, and hurricane numbers are 10%–20% for 
early April outlooks, 20%–30% for early June outlooks, 
and 40%–60% for early August outlooks. For named 
storm numbers, the benchmark MSSS values are 0%–40% 
for early April outlooks, 20%–60% for early June out­
looks, and then increase to 60%–80% for early August 
outlooks. These are the largest skill scores of all predicted 
parameters. The lower value in these ranges corresponds 
to the MSSS calculated with respect to the prior 10 year 
mean (dashed lines) and the larger value corresponds to 
the MSSS calculated with respect to the 1951–2000 mean.

The benchmark MSSS values show that the best 
 performing statistical seasonal model offers skill for all 
measures of hurricane activity and that this skill extends 
out to early April. This skill may be described as moder­
ate to good for early August outlooks, low to moderate 
for early June outlooks, and low for early April 
outlooks.

19.2.6. Future of Atlantic Basin Seasonal 
Hurricane Prediction

Although seasonal Atlantic hurricane outlooks are 
showing skill from early April, it is likely that there are 
untapped sources of seasonal predictability that can fur­
ther enhance the predictive skill. These untapped sources 
of predictability may come, for example, from the identi­
fication of significant additional forcing factor(s) in years 
when ENSO is neutral and/or from further developments 
in dynamic modeling. We anticipate that as model resolu­
tion, data assimilation techniques, and model physics 
continue to improve, the utility of dynamic models for 
seasonal outlooks will continue to increase.
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Figure 19.11 Skill of North Atlantic seasonal hurricane outlooks 2003–2014 assessed using the mean square skill 
score (MSSS) and displayed in the same format as Figure 19.10. The MSSS skill assessment is made with two dif-
ferent climatology forecasts: a fixed 1951–2000 mean and a rolling prior 10 year mean.



326 PREDICTION OF CLIMATE EXTREMES

However, as this chapter focuses on statistical pre­
dictions, two areas of  research related to future devel­
opments in statistical modeling are addressed. One 
promising area for further statistical model development 
is the ability to generate forecast models built over longer 
periods of data. In general, models built over long peri­
ods of data should prove to be more reliable in the future. 
The Twentieth Century Reanalysis developed by the 
Earth System Research Laboratory (ESRL) [Compo 
et  al., 2011] as well as the ERA‐20C project from the 
ECMWF [Stickler et al., 2014] provide gridded datasets 
since the start of the twentieth century. These datasets 
ingest surface data and then use an Ensemble Kalman 
filter (in the case of the Twentieth Century Reanalysis) 
and 4D variational data assimilation (in the case of the 
ERA‐20C) to arrive at estimates of upper‐air fields. The 
ECMWF is currently intensively involved in data rescue 
efforts from pibals and weather balloon data from the 
1920s and 1930s in preparation for a fully coupled three‐
dimensional realization of the atmosphere dating back to 
1900. There is obviously increased uncertainty as one 
heads back in time, but these datasets have proved and 
will likely continue to prove useful in better estimating the 
stability of relationships between predictors and Atlantic 
hurricane activity.

Another area that has helped with improving the accu­
racy of statistically based seasonal outlooks has been the 
reanalysis of the Atlantic basin hurricane database 
(HURDAT2) [Landsea and Franklin, 2013]. As is the case 
with large‐scale fields, there is increased uncertainty in 
observed hurricane activity earlier in the record. This 
uncertainty becomes especially large prior to the mid‐
1960s when no geostationary satellite data were available. 
The reanalysis has attempted to reconstruct historical 
hurricane tracks back to 1851 using historical records 
from newspapers, ship logs, and other sources. This pro­
ject is currently in the middle of the twentieth century 
and has likely provided more accurate estimates of his­
torical ACE. Vecchi and Knutson [2008, 2011] have also 
provided an estimate of named storms and hurricanes, 
respectively, that were likely missed prior to 1965 through 
examination of ship traffic across the Atlantic basin. 
A  similar adjusted ACE metric would be useful for 
 continued improvement of statistically based models of 
seasonal hurricane activity.

19.3. CONCLUSIONS

This chapter has described how statistically based 
North Atlantic seasonal hurricane outlooks have devel­
oped since their inception in 1984. The first seasonal out­
looks were issued by CSU, and were based on the phase 
of ENSO, the phase of the QBO, and Caribbean sea level 

pressure anomalies. The CSU model has evolved and 
now employs a variety of predictors derived from the 
 latest global reanalysis products. In the late 1990s, statis­
tically based seasonal hurricane outlooks were initiated 
by two other groups: NOAA and TSR. The NOAA 
model is statistical‐dynamical in form and utilizes statis­
tical techniques analyzing the state of the AMO and 
ENSO, combined hybrid statistical/dynamical tech­
niques, and dynamical model output. The TSR model is 
sophisticated for a statistical model but primarily utilizes 
two predictors: (1) predicted tropical Atlantic sea surface 
temperatures and (2) predicted low‐level trade wind flow 
across the tropical Atlantic and Caribbean Sea.

All three prediction models (CSU, NOAA, and TSR) 
show significant real‐time skill for the 2003–2014 period, 
with the August outlooks being by far the most accurate. 
Overall, NOAA’s August outlooks show the most skill in 
predicting named storm numbers. The TSR model shows 
the most skill in predicting ACE, and also has the highest 
preseason and early‐season skill in predicting hurricane 
numbers.

The benchmark MSSS values show that the best per­
forming statistical seasonal model offers skill for all 
measures of hurricane activity and that this skill extends 
out to early April. This skill may be described as moder­
ate to good for early August outlooks, low to moderate 
for early June outlooks, and low for early April outlooks. 
It is likely that untapped sources of seasonal hurricane 
predictability remain to be discovered, and it is possible 
for statistical models to gain modest improvements upon 
the seasonal real‐time outlook skills documented herein.
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