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Abstract13

Polarimetric coastal radar data are used to compare the rainfall characteristics of Hurri-14

canes Harvey (2017) and Florence (2018). Intense rainfall was an infrequent yet impor-15

tant contributor to the total rainfall in Harvey, but its relative contribution varied spatially.16

The total rainfall over land maximized near the coast over Beaumont, TX due to intense17

convection resulting from prolonged onshore flow downshear from the circulation center.18

Overall, polarimetric radar observations in Harvey show a dominance of high concentra-19

tions of small-to-medium drops, consistent with prior tropical cyclone studies. The micro-20

physical characteristics were spatially and temporally inhomogeneous however, with larger21

drops more frequent on 27 August and higher number concentrations more frequent on 2822

and 30 August. The polarimetric variables and raindrop characteristics observed during23

Florence share broad similarities to Harvey, but had reduced variability, fewer observations24

of stronger reflectivity and differential reflectivity, and a lower frequency of high num-25

ber concentrations and medium-sized drops. The radar data indicate Florence had reduced26

coverage of stronger convection compared to Harvey. We hypothesize that differences in27

storm motion, intensity decay rates, and vertical wind shear produce the distinct precipita-28

tion structures and microphysical differences seen in Harvey and Florence.29

1 Introduction30

Heavy rainfall is a known hazard of tropical cyclones (TCs), responsible for 25% of31

hurricane fatalities in the United States (Rappaport [2014]). During the 2017 and 201832

Atlantic hurricane seasons, rainfall from Hurricanes Harvey and Florence set new state33

rainfall records in Texas and the Carolinas and caused destructive flooding. Over a 6-d34

period in August 2017, Hurricane Harvey stalled over coastal Texas and the peak rain-35

fall observation of 1538 mm near Nederland, TX broke the continental and overall United36

States TC rainfall records previously held by Tropical Storm Amelia (1978) and Hurri-37

cane Hiki (1950), respectively. Equally noteworthy, rainfall exceeded 500 mm over a large38

area extending from southeast of Austin, TX to the Texas-Louisiana border (Blake and39

Zelinsky [2018]). Just one year later, Hurricane Florence crept along the east coast of the40

United States, where accumulated rainfall totals of 912 mm over three days near Eliza-41

bethtown, NC and 600 mm near Loris, SC broke the TC precipitation records for each42

state. In each case, the extreme rainfall caused considerable impacts. Harvey caused over43

65 direct deaths and widespread structural damage throughout southeast Texas (Blake and44
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Zelinsky [2018]). In the Carolinas, Florence caused 22 direct fatalities, widespread flood-45

ing, and damage (Stewart and Berg [2019]).46

Forecasting extreme rainfall is challenging since the accumulation results from in-47

tense rain rates, long duration events, or a combination of both factors. The microphysical48

processes that determine the surface rainfall intensity and drop size distribution (DSD)49

in a TC are a complex mixture of raindrop creation, growth, and melting ice (Black and50

Hallett [1986]; Marks and Houze [1987]; Houze et al. [1992]; Black and Hallett [1999]).51

While the rotational storm dynamics and their interaction with the boundary layer are52

largely responsible for producing the vertical motion leading to precipitation, the envi-53

ronmental shear and the convective lifecycle also contribute to the strength and location54

of convective and stratiform precipitation in a TC (Corbosiero and Molinari [2002]; Chen55

et al. [2006]; Hence and Houze [2011, 2012]; Didlake and Kumjian [2017]). Overall, the56

complicated interplay between microphysical processes and the kinematic and thermo-57

dynamic environments that determine their importance, all within a translating, rotating58

storm, make it a challenge to accurately predict the local rainfall accumulation.59

In situ and surface microphysical observations from rain gauges and disdrometers60

provide important information about hydrometeor characteristics, but only represent a61

small region of a TC. Nonetheless, disdrometer observations indicate that TC surface62

rainfall is typically dominated by numerous, midsize raindrops with median diameters63

of roughly 1-2 mm ( Jorgensen and Willis [1982]; Ulbrich and Lee [2002]; Tokay et al.64

[2008]; Chang et al. [2009]; Wang et al. [2016]). DSD characteristics can vary substan-65

tially in time and space and depend on the specific precipitation growth mechanisms. In66

Typhoon Haima (2004), convective rainfall periods were composed of numerous midsize67

drops with median diameters around 2 mm, whereas stratiform rainfall periods had fewer68

drops with smaller median diameters between 1.25-1.75 mm (Chang et al. [2009]). How-69

ever, the wind speed limitations of ground-based disdrometers restrict most studies to re-70

gions away from the eyewall (Ulbrich and Lee [2002]; Tokay et al. [2008]; Chang et al.71

[2009]; Wang et al. [2016]).72

Polarimetric radars can provide additional insight into the bulk hydrometeor shapes73

and concentrations over a much larger area (Bringi and Chandrasekar [2001]; Ryzhkov74

et al. [2005]; Kumjian [2013]; Ryzhkov and Zrnic [2019]). Although operational polarimet-75

ric radars in the United States are relatively recent, their data have improved our under-76
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standing of TC microphysical processes. Brown et al. [2016] analyzed the rainfall charac-77

teristics from Hurricanes Arthur and Ana (2014) and found similar but distinct probability78

distributions of the DSDs in the two TCs that were in some cases substantially different79

than the DSDs produced by numerical simulations. Didlake and Kumjian [2017] also an-80

alyzed Hurricane Arthur (2014) and found that convection located in the downshear right81

quadrant of the TC produced columnar and planar crystals, which were advected down-82

stream to the downshear left quadrant and fell as stratiform rain; despite different con-83

tributions from rain and ice processes, both quadrants exhibited heavy rain. The relative84

importance of rain and ice processes varies based on the precipitation feature and type.85

Polarimetric analysis of the convective regions of a single rainband in Typhoon86

Matmo (2014) revealed a higher contribution of warm-rain processes to the surface rain,87

though ice processes were not insignificant (Wang et al. [2016]). A case study of an outer88

rainband in Typhoon Nida (2016) showed more influence from convective ice processes89

(Wu et al. [2018]). Case studies of Hurricanes Irene (2011) and Arthur (2014) revealed90

small ice was a weak contributor to the total ice water path in convective and stratiform91

precipitation, but was prevalent in low-reflectivity regions (Kalina et al. [2017]). In addi-92

tion to differences associated with specific features, processes can be influenced by envi-93

ronmental factors. Recently, Didlake and Kumjian [2018] and Feng and Bell [2019] found94

evidence of size-sorting of raindrops in TCs due to the asymmetric vertical motion caused95

by the storm motion and deep layer vertical wind shear vector, respectively. The variety of96

conclusions with regards to the importance of different microphysical and dynamical pro-97

cesses in TCs underscore the spatial and temporal variability of rainfall production mecha-98

nisms as well as the variability in storm structure and environmental conditions.99

Hurricanes Harvey and Florence offer an opportunity to study the bulk surface rain-100

fall characteristics in two record-setting storms. Wolff et al. [2019] used polarimetric radar101

observations of Harvey to show that distinct DSD regimes impact rain rate retrievals and102

complicate the selection of parameters for attenuation-based algorithms. Through analyz-103

ing reanalysis and polarimetric radar data, Brauer et al. [2020] showed that strong hori-104

zontal moisture flux convergence, warm-rain processes, and rotating supercells all con-105

tributed to efficient precipitation processes in Harvey. Both Wolff et al. [2019] and Brauer106

et al. [2020] focused heavily on the precipitation processes and characteristics close to the107

Houston metropolitan area. In the current study, we focus on a broader region, including108
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the rainfall maximum near Beaumont, TX, with the aim of better understanding the vari-109

ability in rainfall in Harvey and the similarities and differences with rainfall in Florence.110

The goal of this study is to characterize the nature of the extreme precipitation as-111

sociated with Harvey and Florence, taking advantage of polarimetric radar data and the112

dense rain gauge network (where available). We approach this study through two perspec-113

tives: 1) assessing the relative contributions of intense and long-lasting rainfall and 2) ex-114

amining characteristics of the near-surface rainfall inferred from polarimetric radar data.115

We first introduce our data processing methods (Sec. 2). Then we decompose the surface116

precipitation from Harvey into intense and light rain, examine how the rainfall unfolded117

at two representative rain gauge locations, and use the polarimetric radar data from Har-118

vey and Florence to compare the evolution and variability of the rainfall characteristics119

over a broad region of each storm (Sec. 3). We then use the polarimetric radar data to de-120

rive metrics to describe the bulk drop size distributions in each storm (Sec. 4). Finally,121

we propose hypotheses to explain the differences in the observed characteristics and the122

inferred microphysical processes from Harvey and Florence (Sec. 5).123

2 Data and Processing124

2.1 Rain gauge data125

Hourly precipitation data come from the Automated Surface Observing System (ASOS)126

network. Due to strong winds and heavy rainfall, many rain gauges failed during Har-127

vey and Florence. We focus our analysis on the gauges that reported more than an av-128

erage of 20 hourly observations per day. This requirement allows us to include stations129

that are missing an occasional hourly observation, while excluding stations that are miss-130

ing too much data such that their statistics become meaningless. Most ASOS stations in131

Texas met the required number of hourly observations. Of the stations that did not meet132

the required number of hourly observations, all but one station failed for at least half the133

period, meaning the stations included were not sensitive to modest reductions in the re-134

quired number of hours. The vast majority of stations failed during Florence, particularly135

in North Carolina, where only two ASOS stations met our hourly observations require-136

ment. In South Carolina, roughly half the stations met our requirement and like Harvey,137

the stations that did not were also missing roughly half the observations. Unfortunately,138
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the lack of adequate stations from Florence prevents a complete comparison between rain139

gauge data from Florence and Harvey.140

2.2 Polarimetric radar data141

The radar data used in this study come from the operational polarimetric Next Gen-142

eration Weather Radar (NEXRAD) network. These radars have a wavelength of 10 cm143

(S band) and a 1° beamwidth, which allows for spatial resolution of order ∼1 km over144

large distances with minimal attenuation. The key benefit of polarimetric capabilities is145

the inference of bulk hydrometeor characteristics through the use of both horizontally and146

vertically polarized radio waves (Bringi and Chandrasekar [2001]; Ryzhkov et al. [2005];147

Kumjian [2013]). In Rayleigh scattering regimes, the radar reflectivity at horizontal polar-148

ization /� is proportional to the power returned from the backscatter due to both raindrop149

size and concentration, although it is more sensitive to the former due to the dependence150

on the sixth power of the drop diameter. The differential reflectivity /�' is defined as151

the difference between the reflectivity at horizontal and vertical polarization and is pro-152

portional to the median drop size of the DSD. The correlation coefficient d�+ is defined153

as the correlation of the horizontal and vertical pulses, with high values associated with154

nearly spherical targets like raindrops, and lower values typically associated with biolog-155

ical targets or mixed phase conditions within the pulse volume. The specific differential156

phase  �% is the local change in the difference between the vertical and horizontal phase157

shifts and is proportional to the liquid water content, which depends on both the drop size158

and number concentration.159

Located just west of Galveston Bay, the Houston radar (KHGX) captured the vast160

majority of Harvey’s precipitation. Along the coast in central North Carolina, the More-161

head City radar (KMHX) was situated to the northeast of Florence’s maximum precipi-162

tation, but unfortunately went offline after 1800 UTC on 15 September, missing the final163

24 h of rainfall. While the nearby Wilmington radar (KLTX) was better positioned than164

KMHX and operated over a longer period, it suffered from an apparent /�' bias and in-165

termittent dropouts (not shown). Although applying an estimated bias correction to the166

KLTX data produced results that were reasonably consistent with the KMHX radar, we fo-167

cus our analysis on the higher-quality KMHX data to provide a better comparison with the168

high-quality radar data from Harvey.169
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To ensure the best representation of near-surface characteristics, we restrict the ma-170

jority of our analysis to data from the lowest elevation angle (0.5°) from each radar. We171

retain the native polar coordinates of the radar to avoid interpolation, but the total and172

fractional coverage of each polarimetric variable and derived metric category at each range173

gate are weighted by the distance from the radar to account for beam spreading at larger174

radii. We exclude data beyond 127 km from the radar to limit contamination by ice above175

the melting layer. We note that by including all data within 127 km of KHGX our analy-176

sis encompasses a larger area than the one used by Wolff et al. [2019], which focused on177

the region immediately surrounding the Harris County Flood Warning System Network.178

LROSE software (Bell [2019]) was first used to determine the most likely hydrome-179

teor type according to the National Center for Atmospheric Research (NCAR) Particle ID180

(PID) fuzzy logic algorithm (Vivekanandan et al. [1999]). We then isolated all radar pix-181

els that were classified as light, moderate, or heavy rain and also had d�+ values between182

0.95 and 1.0, inclusive, to retain only rain in our analysis. We performed an additional183

subjective quality control by identifying persistent signals of reduced or elevated /�'184

along entire beams and removed those beams from the analysis. This processing resulted185

in the removal of 20 beams (2.8%) from KHGX believed to have been compromised by186

partial beam blockage, while no beams from KMHX were compromised.187

 �% estimation in LROSE is based on an updated version of the Hubbert and Bringi188

[1995] method. First, q�% is unfolded to create a monotonically increasing field. The un-189

folded q�% field is smoothed using a finite impulse response (FIR) filter, similar to Hub-190

bert and Bringi [1995], except using fewer iterations. Local bumps in the smoothed q�%191

field due to backscatter differential phase (X) are removed before another FIR is applied192

for additional smoothing. Finally, the algorithm computes  �% as the derivative of the193

smoothed and corrected q�% . While  �% can be negative in ice regions, negative val-194

ues are unphysical in rain and indicative of noise in the derivative calculation. To further195

reduce the impact of noise on our analysis, we removed all radar gates where  �% was196

negative.197

The Cunningham et al. [2013] technique was used to estimate /�' bias due to cal-198

ibration errors by applying the technique to low-reflectivity regions in each radar sweep199

and averaging together the individual biases over all sweeps where the number of samples200

surpassed 500. With this technique, we calculated /�' bias corrections of -0.25 and -0.07201
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dB to KHGX and KMHX, respectively. At times, we also noticed odd jumps in the mean202

/�' at KHGX, which were well outside the mean bias correction and we deemed to be203

unphysical. We removed 22 of the 0.5° sweeps that exhibited strong jumps in the mean204

/�' compared to the surrounding times.205

2.3 Storm and shear data206

The storm intensity and location data for Harvey and Florence come from the Na-207

tional Hurricane Center Best Track dataset. The deep-layer wind shear magnitude and208

direction for Harvey come from the Statistical Hurricane Intensity Prediction Scheme209

(SHIPS) database (DeMaria et al. [2005]). Since the final predictors had not been released210

for 2018 at the time of this manuscript, we use the real-time SHIPS predictors for Flo-211

rence. In each case, the deep-layer shear is calculated from 850-200 hPa over radii be-212

tween 0 and 500 km from the storm center after the vortex has been removed.213

3 Rain gauge and polarimetric radar characteristics214

3.1 Harvey rainfall215

Harvey first made landfall near Rockport, TX as a Category 4 hurricane (Blake and224

Zelinsky [2018]). Weak steering flow slowed and eventually reversed the inland movement,225

sending Harvey back to the Gulf of Mexico around 1200 UTC on 28 August. Although226

the center of Harvey remained at least 170 km from Houston, heavy rain accumulated227

near Houston and Beaumont between 0000 UTC on 25 August and 0000 UTC on 31 Au-228

gust as persistent onshore flow rose over a stationary front (Blake and Zelinsky [2018]).229

Overall, rain gauges near the coast measured the largest rainfall accumulations (Fig. 1a).230

Notably, Houston’s George Bush Intercontinental Airport (KIAH) and Beaumont’s Jack231

Brooks Regional Airport (KBPT) received 794 mm and 1207 mm in five days, respec-232

tively.233

Event totals alone are insufficient for understanding extreme rainfall, which depends234

on both rain rate and event duration. Given Harvey’s slow motion, it is clear that the long235

period of rainfall was an important factor. In an attempt to untangle the two effects, we236

isolate the frequency and fractional contribution of intense rain, which we define as a rain237

rate exceeding 25.4 mm h−1 (1 in h−1). This threshold is consistent with the minimum rain238

rate of 25 mm h−1 used by Hitchens et al. [2013] to define heavy rain in their climatol-239
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ogy of hourly rain rates in the continental United States. Hitchens et al. [2013] show that240

such a rain rate is infrequent but not rare. Gauge-adjusted radar estimates of precipitation241

suggest 106 instances of 25 mm h−1 rain rates and 102-103 instances of 150 mm h−1 rain242

rates occur each year, compared to over 107 instances of 10 mm h−1 rain rates (Hitchens243

et al. [2013]). For each station, we calculate the frequency of intense and light rain (ex-244

cluding hours with no rain) and their relative contributions to the total storm rainfall over245

the five-day period. By our definition, intense rain was infrequent and comprised no more246

than one-fourth of all raining hours, but the intense rain occurrence was closely associ-247

ated with the total rain (Fig. 1). Intense rain contributed nearly one-third of the total rain248

in the Houston metro area. Meanwhile, intense rainfall made up one-fourth of all hours249

with measurable rainfall at stations close to the Louisiana border and was responsible for250

nearly two-thirds of the total rain. The two stations near Beaumont, TX consistently saw251

a larger fraction of the total rainfall come from intense rain rates than all but one station,252

regardless of whether intense rainfall threshold was 20, 30, 40, or 50 mm h−1 (not shown).253

The only other station that had comparable fractional contribution of intense rainfall when254

the intense rainfall threshold was 40 or 50 mm h−1, is located on the west side of Houston255

(29.62N, -95.65W). The gauge observed less rainfall than the Beaumont gauges and most256

of the Houston gauges and three hours of intense rain were able to make a larger frac-257

tional contribution. Both intense rain rates and the long duration were important, but their258

relative importance varied across Texas.259

The spatial variability of rainfall evolution is highlighted in the precipitation time260

series for KIAH and KBPT (Fig. 1b, c). We focus on the 120-h (5-d) period after 0000261

UTC on 26 August as it encompasses most of the rain at each location (KIAH: 99%;262

KBPT: 97%). Overall, the hourly KIAH timeseries is consistent with the 15-minute ob-263

servations from the Harris County Flood Warning System gauges (Wolff et al. [2019]). To264

first order, Harvey’s slow eastward movement dominates differences between the time se-265

ries in Houston and Beaumont. The daily rainfall at KIAH peaked on 27 August as the266

center of Harvey passed by Victoria, TX, placing the Houston metro area closer to the cir-267

culation center and directly in the onshore flow. Meanwhile, rainfall at KBPT peaked dur-268

ing the 12-h period surrounding 0000 UTC on 30 August as the center of Harvey moved269

southeast of Houston, when Beaumont was closer to the storm center. At both airports,270

the peak rainfall was strong and steady, but rain rates were more intense at KBPT. Before271

the peak rainfall, both locations observed intermittent intense rain suggesting embedded272
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convection within a broader region of stratiform precipitation. KBPT was in this regime273

for a longer period than KIAH and only light rain occurred at KIAH after Harvey pushed274

east. The period of light rain should not be disregarded, as it amounts to 20% of the total275

precipitation at KIAH. But the combination of prolonged convection and more intense rain276

rates led to more precipitation at KBPT than KIAH.277

3.2 Polarimetric characteristics of Harvey278

As discussed in the introduction, a key benefit of polarimetric radars is the ability283

to infer microphysical characteristics over a large area. A sample sweep from the KHGX284

radar shows widespread rain over southeast TX on 27 August (Fig. 2a). Radar reflectiv-285

ity values above 40 dBZ are frequent, but the echo intensities are not uniform and the286

NCAR PID algorithm identifies differences in the rain intensity (Fig. 2b). To examine287

the radar data through time, we select all radar gates classified by the PID as light, mod-288

erate, or heavy rain. In Vivekanandan et al. [1999], these categories roughly correspond to289

rain rates of < 10 mm h−1, < 40 mm h−1, and > 40 mm h−1, respectively. These categories290

do not match our definitions of light and intense rainfall, since our primary usage of the291

PID categories is merely to identify likely raining radar echoes. Some infrequent echoes292

believed to be falsely identified as graupel are excluded from our analysis (Fig. 2b).293

Once the raining areas are identified, we count the frequency of each PID rain cate-294

gory within 127 km of the radar. We weight the count for each radar gate by its distance295

from the radar to account for beam spreading at larger range distances and aggregate the296

weighted counts at each hour to create a time series of hourly PID counts (Fig. 2c). We297

include data over the ocean, but our results are not sensitive to the exclusion of offshore298

data points. Rain was widespread and peaked in coverage on 27 August. Harvey’s exit299

from the radar domain is visible in the diminishing counts after 1200 UTC on 30 Au-300

gust. Occasional missing or bad radar sweeps yield gaps in the time series. To determine301

the relative importance of each PID category for each hour over the precipitating area,302

we examine the fractional coverage of the PID categories (Fig. 2d). Any periods when303

the weighted count failed to exceed 2 × 1010 were removed to ensure a sufficient sample304

size. Overall, light rain was the dominant PID category, but heavy and moderate rain were305

more frequent before 1200 UTC on 28 August. A slight resurgence in moderate rain oc-306

curred between 0000-0600 UTC on 30 August.307
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Using these rain categories to identify likely precipitating echo, we examine the dis-310

tributions of /� , /�', and  �% to determine the dominant microphysical characteristics.311

One prominent feature of the distributions is the modest values of each polarimetric vari-312

able, consistent with a midsize-drop dominated regime (Fig. 3). /� and /�' values lie313

mostly below 45 dBZ and 2 dB, respectively, consistent with prior studies (Brown et al.314

[2016], Wang et al. [2016], Wolff et al. [2019], and Brauer et al. [2020]).  �% values in-315

frequently surpass the 0.3° km−1 threshold often used for  �%-based rain rate algorithms,316

similar to  �% values estimated from disdrometer observations in tropical convection over317

the Indo-Pacific warm pool (Thompson et al. [2018]). Despite modest values overall, /� ,318

/�', and  �% values were larger in the first half of the event, consistent with the in-319

creased prevalence of moderate and heavy rain identified by the PID algorithm. The  �%320

values in our analysis cover the same range as the values obtained by Wolff et al. [2019],321

but our distribution skews towards weaker values. Our area of analysis is roughly a fac-322

tor of 4 larger than Wolff et al. [2019] that focused on a rectangle located in the northwest323

quadrant of the radar domain to compare radar-estimated rain rates with rain gauges in324

the Harris County Flood Warning System Network. We also use a slightly different algo-325

rithm to estimate  �% . Since the estimated  �% values span a similar range of values,326

we hypothesize that the different regions of analysis contribute the most to the difference327

in  �% values.328

The greatest shift to larger reflectivity values in the full-domain distributions oc-329

curred in two periods: 0600 UTC on 27 August through 1200 UTC on 28 August and330

0000-0600 UTC on 30 August (Fig. 3a). Despite similar reflectivity distributions, /�'331

values were greater in between 0300-0900 UTC 27 August, indicating larger drops were332

responsible for the higher reflectivities (Fig. 3b). The simultaneous increase in /� and333

/�' values on 27 August were noted by both Wolff et al. [2019] and Brauer et al. [2020].334

Although the larger-domain hourly timeseries show that the most intense values only per-335

sisted for half the day. In contrast to the high /�' values on 27 August, the high reflec-336

tivities on 30 August coincided with reduced /�' values, indicative of smaller drops.337

In between was a 36-h period (1200 UTC on 28 August-0000 UTC 30 August) of weak338

reflectivity values across the domain. The coincident decrease in /�' and  �% values339

around 1200 UTC 28 August suggests a decrease in the drop size. There was a similar340

weakening of the polarimetric variables after the second heavy rain peak (∼1200 UTC 30341

August), but the echo coverage at this time was minimal (Fig. 2c).342
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To get a sense of how the polarimetric data relate to the rain gauge data at key time349

periods, we compare radar data surrounding KIAH and KBPT during hours when the sta-350

tions experienced their heaviest rainfall. Figure 4 shows snapshots of gridded radar data351

near KIAH and KBPT during those hours of intense rainfall. Radar data was gridded with352

LROSE Radx2Grid software with horizontal grid spacing of 1 km and vertical grid spac-353

ing of 0.5 km below 3 km altitude and 1.0 km above 3 km altitude. Near KIAH, the 0421354

UTC radar observation on 27 August coincided with an hourly rain gauge observation of355

nearly 50 mm. Reflectivity values at 1 km altitude within 32 km of the gauge ranged from356

25-50 dBZ, while those immediately next to the gauge exhibited a narrower range between357

35-45 dBZ (Fig. 4a). Meanwhile, near KBPT, the 0431 UTC radar observation on 30 Au-358

gust coincided with an hourly rain gauge observation of almost 100 mm, which was the359

highest rain rate at that location. Although 1 km altitude reflectivity values surrounding360

the gauge spanned a similar range as observed near KIAH days prior, reflectivity values361

were more homogeneous, with a large area of reflectivity values exceeding 40 dBZ (Fig.362

4b). Comparing the vertical profiles of /� , /�', and  �% shows that each variable was363

generally more intense near KBPT throughout the atmosphere, with the exception of /�'364

values above 6 km altitude, where the spread was large (Fig. 4c-e). All three polarimet-365

ric profiles increase towards the surface near KBPT, consistent with enhanced collision-366

coalescence processes (Kumjian and Prat [2014]). Meanwhile, /� increases toward the367

surface near KIAH, but the  �% increase toward the surface is weaker and /�' exhibits a368

lot of spread, including both positive and negative slopes. The variability in vertical struc-369

ture is not surprising given the heterogeneous low-level reflectivity field near KIAH at370

this time; Brauer et al. [2020] also showed that vertical polarimetric profiles over nearby371

downtown Houston varied substantially on 27 August.372

3.3 Florence rainfall373

The outer rainbands of Florence approached North Carolina on 13 September and377

Florence made landfall in southeast North Carolina on 14 September as a Category 1378

storm. Similar to Harvey, forward motion slowed as Florence crept slowly into South Car-379

olina before accelerating northward late on 16 September (Fig. 5). Unfortunately, exten-380

sive rain gauge outages in the region of maximum rainfall preclude a breakdown of rain381

rates for Florence, as indicated by the number of stations with too many hours of missing382

data in Fig. 5. The available data reveal two big differences from Harvey, however. First,383
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Florence was a shorter event as most gauges observed rainfall for approximately three384

days. Second, the available rain rates from Florence are comparable, yet slightly weaker385

than the rain rates in Fig. 1b,c, although rain rates likely strengthened on 15 September386

when most gauges were offline. As discussed in section 2, the Morehead City, NC radar387

(KMHX) also went offline midway through the event (∼1800 UTC 15 September), missing388

the final 12-24 hours of rainfall over North Carolina. Despite missing data, we think the389

high radar data quality, sufficient length of the data record (> 48 h), and similar statistics390

to bias-corrected KLTX radar data allow for a reasonable comparison of Florence’s rainfall391

characteristics derived from KMHX and the rainfall characteristics from Harvey.392

3.4 Polarimetric characteristics of Florence393

Similar to Harvey, polarimetric data from Florence are dominated spatially and tem-395

porally by the light rain PID category (Fig. 6a). The magnitude of range-weighted counts396

is similar, although KMHX observed more offshore pixels than KHGX. Similar to Harvey,397

our results are not sensitive to the exclusion of offshore data points. The range-weighted398

counts increased slowly on 13 September as Florence approached the east coast, before399

plateauing on 14 September (Fig. 6b). As Florence moved southwest away from the radar,400

the range-weighted counts decreased on 15 September. At the same time, the fractional401

coverage of moderate and heavy rain categories increased (Fig. 6c).402

The polarimetric distributions exhibit similar tropical cyclone characteristics to Har-404

vey, although most values are generally lower. Reflectivity values seldom exceed 45 dBZ,405

differential reflectivity values never exceed 2 dB, and  �% values are lower than those406

seen during Harvey (Fig. 7). The lower polarimetric values are consistent with the values407

observed in an inner rainband in Wu et al. [2018]. Greater coverage of the moderate inten-408

sity values corresponds to reduced coverage of heavier rain rates in comparison to Harvey.409

Additionally, the polarimetric distributions from Florence gradually shift to higher val-410

ues after 0600 UTC on 15 September in contrast to the more episodic nature of Harvey’s411

variability. The increase in coverage of /� , /�', and  �% above 40 dBZ, 1 dB, and 0.3412

(°km−1), respectively, are the closest the polarimetric values from Florence approach the413

statistics from the first 60 hours of Harvey (Fig. 3). Even if these statistics persisted for414

the final 24 hours that Florence impacted North Carolina, the length of influence by heav-415

ier rain rates would only amount to 48 hours. The amount of intense polarimetric values416

in Florence was reduced spatially and temporally in comparison to Harvey.417

–13–



Confidential manuscript submitted to JGR-Atmospheres

Although most rain gauges failed in Florence, we can still examine representative424

vertical profiles of polarimetric quantities. Due to the lack of suitable rain gauge com-425

parisons, we chose instead to highlight the vertical structure of two different TC features:426

a convective outer rainband and an inner rainband. Figure 8 shows snapshots of the hor-427

izontal and vertical structure of two rainbands occurring simultaneously in Florence on428

14 September 2018. The outer rainband exhibits a similar structure as the examples from429

Harvey in Fig. 4, with heterogeneous horizontal patterns of reflectivity at 1 km and re-430

flectivity peaking between 45-52 dBZ. The vertical profiles of the polarimetric variables431

in the outer rainband shown in Fig. 8c-e are similar to those near KBPT during Harvey432

on 30 August, where /� , /�', and  �% all increase toward the ground as collision-433

coalescence processes are enhanced (Kumjian and Prat [2014]). Meanwhile, the inner434

rainband shows more modest increases in /� and  �% near the surface, and the /�'435

profile varies little below 4 km. These localized profiles combined with the examples from436

Harvey underscore the variety of microphysical processes that can exist in a TC, consis-437

tent with prior studies (Wang et al. [2016]; Didlake and Kumjian [2018]; Wu et al. [2018]).438

A more systematic examination of the vertical polarimetric profiles with respect to both439

TC features and surface rainfall is beyond the scope of this study but is recommended for440

future work.441

4 Estimated DSD characteristics442

To better understand the covariability of the rain drop size and number concentra-443

tion, we retrieve specific metrics related to the DSD from the radar data. A DSD can be444

approximated as a gamma distribution with the following form:445

# (�) = #0�
` exp(−Λ�) (1)446

where #0 is the intercept parameter, D is the drop diameter, ` is the shape parameter, and447

Λ is the slope parameter (Ulbrich [1983]). The distribution can be normalized (Willis448

[1984]) to compare different DSDs using a modified intercept parameter proportional to449

the liquid water content and median drop diameter:450

#, =
1.81 × 105!,�

cd!�
4
0

(2)451

where #, (m−3mm−1) is the normalized intercept parameter, LWC (g m−3) is the liquid452

water content, d! (g cm−3) is the density of liquid water, and �0 (mm) is the median vol-453

ume diameter. #, and �0 can be considered proxies for the number of drops and the454
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median drop size. Although an assumed gamma distribution cannot represent all observed455

DSDs, gamma distributions are prevalent within the literature and are an effective way of456

identifying meaningful spatial and temporal changes in the type of DSD (Willis [1984];457

Bringi et al. [2003]; Chang et al. [2009]; Thompson et al. [2015]; Wang et al. [2016]; Za-458

grodnik et al. [2018]). Without disdrometer measurements of �0 and #, , we use the459

CSU RadarTools package (Lang et al. [2019]) to estimate these parameters from polari-460

metric data following the algorithm described by Bringi et al. [2015] where �0 and #,461

are related to /�' and /� through the following equations:462

�0 =


0.0536/3

�'
− 0.1971/2

�'
+ 0.6261/�' + 1.0815, /�' ≥ 1dB

0.0424/4
�'
− 0.4571/3

�'
+ 0.6215/2

�'
+ 0.457/�' + 0.8808, /�' < 1dB

(3)463

464

#, = 19.76
/�

�7.46
0

(4)465

We exclude data where /�' is below -0.5 dB, though such data points are infrequent.466

To understand how the DSDs are broadly related to water content, we obtain a theoreti-467

cal estimate of LWC by rearranging equation 2. Infrequent big drop and numerous small468

drop DSDs can produce similar LWC values, despite distinct radar signatures and forma-469

tion processes (Fig. 9). As discussed by Chang et al. [2009], precipitation radar estimates470

such as those from S-band can miss the numerous (;>610 (#, ) > 4), small drop (�0 < 1471

mm) DSDs due to limitations in radar sensitivity, which can cause an underestimate of the472

LWC from precipitation radar estimates. Despite these uncertainties, by using the same473

algorithm and radar wavelength to estimate #, and �0 in Harvey and Florence, we can474

quantitatively compare the drop size characteristics of the two TCs, while qualitatively475

comparing with previous studies that use disdrometer measurements or different radar re-476

trieval techniques.477

Figure 9a shows that numerous small drop DSDs were common in Harvey, which486

is broadly consistent with previous studies on TC DSDs (Tokay et al. [2008]; Chang et al.487

[2009]; Wolff et al. [2019]). The retrieval suggests Harvey’s dominant DSD type lies in488

between small drop DSDs from maritime convection (Bringi et al. [2003]; Thompson et al.489

[2015]) and large drop DSDs that can occur in continental, wintertime precipitation (Za-490

grodnik et al. [2018]), but the spread differs from other polarimetric estimates of DSD491

parameters in TCs. The retrieved DSDs exhibit lower concentrations than Wang et al.492

[2016] by an order of magnitude (Δ1 in ;>610 (#, ) space) and the median drop diameters493

are approximately 0.5 mm smaller than the values retrieved by Chang et al. [2009]. That494
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being said, we emphasize that these two studies use a different technique (Zhang et al.495

[2001]) that estimates #0 and Λ in Eq. 1 rather than the parameters estimated here in Eq.496

2. To test the sensitivity to the retrieval algorithm, we calculated the DSD parameters us-497

ing the relationship obtained by Brandes et al. [2004]. The resulting #, -�0 distributions,498

the temporal evolution of each storm, and the differences between Harvey and Florence499

were quite similar using either the Bringi et al. [2015] or Brandes et al. [2004] retrievals500

(not shown). As a result, we feel confident that our comparisons between Harvey and Flo-501

rence using the same retrieval technique reveal differences in rainfall characteristics and502

microphysical processes between the two storms. Further comparisons with other storms503

may reflect retrieval technique uncertainty in addition to differences in microphysical pro-504

cesses.505

The derived DSD parameters in Florence span similar values to Harvey, and show a506

qualitatively similar joint probability distribution (Fig. 9b). Some distinct differences are507

apparent however, with a reduction in the spread of the observed DSD variability and a508

shift towards smaller drops (Fig. 9c). The most common DSDs have an estimated �0 at509

or below 1.0 mm, with relatively high number concentration. The overall similarity be-510

tween the Harvey and Florence probability distributions suggest comparable microphysical511

processes in general in both events but with more stronger convection in Harvey.512

To provide more insight into the variability of the observed DSDs, we divide the513

joint #, -�0 distribution into four quadrants using boundaries of 3.5 m−3 mm−1 and 1.2514

mm (Fig. 9). These thresholds are arbitrary, but approximate the midpoint of each distri-515

bution. Not only does each quadrant have a different combination of median drop size and516

number concentration, but the thresholds separate the distributions by theoretical LWC val-517

ues. In particular, the difference in the theoretical LWC between the lower-left (low LWC)518

and upper-right (high LWC) quadrants is substantial. The following quadrant descriptions519

are defined for the purposes of comparison: low-concentration small drops (quadrant SL),520

low-concentration medium drops (quadrant ML), high-concentration small drops (quadrant521

SH), and high-concentration medium drops (quadrant MH).522

In Harvey, all four DSD quadrants coexisted over the radar domain at all times but525

their relative coverage varied in time (Fig. 10). The fractional coverage of larger �0 val-526

ues achieved temporary maxima midday on 26 and 27 August and temporary minima mid-527

day on 28 August (Fig. 10a). #, variability over time was smaller than the variability528
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in �0 (Fig. 10b). Although variable in time, the ML and SH quadrants are slightly more529

frequent throughout Harvey, while the SH quadrant is the most common. (Fig. 10c).530

Overall, two notable regime shifts in the DSDs occurred during Harvey’s evolution.531

First, a shift to larger drops occurred on 27 August, characterized by a maximum in �0532

values, increased quadrant MH coverage, and a maximum in quadrant ML coverage (Fig.533

10). At the same time, there is a shift to lower #, values. These characteristics are con-534

sistent with the conclusions of Wolff et al. [2019] and Brauer et al. [2020]. This regime535

was short-lived, lasting only from 0400-01700 UTC on 27 August. The surge in medium536

drop coverage is similar to observations of a convective cell in an outer rainband in Ty-537

phoon Nida (2016) where bigger drops were prominent (Wu et al. [2018]). In Wu et al.538

[2018], increased /� , /�', and  �% values were found beneath strong, deep ascent and539

high concentrations of graupel and aggregates, which indicated the importance of melt-540

ing ice aloft to bigger raindrops below. Due to differences in methodology, it is unclear541

whether the drops in Nida (2016) would fall into our ML or MH quadrants. In the study542

by Wang et al. [2016] of Typhoon Matmo (2014), they did not observe a noticeable in-543

crease in low-concentration medium drops (our ML quadrant) but did report a shift to-544

wards higher number concentration (our MH quadrant) within a convective rainband. We545

note that the increase in medium drops observed by KHGX radar occurred around the546

same time that KIAH airport rain gauge was receiving its peak rain rates and the radar547

gates closest to the gauge showed a greater occurrence of the high-concentration drop548

quadrants (not shown). The fine scale spatial and temporal variability confirms the chal-549

lenge of TC precipitation forecasts to accurately predict local maxima embedded within a550

broad envelope of long duration light to moderate rain.551

The second regime shift exhibited greater coverage by the high-concentration DSDs552

(SH and MH) during two periods: 1800 UTC on 27 August through 1200 UTC on 28553

August and 0000-0600 UTC 30 August. In particular, the numerous, small drop DSDs554

(the SH quadrant) reached peak coverage. This smaller drop regime was noted by Wolff555

et al. [2019] on 28 August, although they did not analyze data from 30 August as the rain556

had exited Harris County. The prevalence of higher concentration of small to medium557

size drops is likely associated with an enhanced warm rain process. The extended pe-558

riod that rain was within range of the radar is a likely contributor to the large variety of559

near-surface microphysical characteristics compared to the Wang et al. [2016] and Wu et al.560

[2018] studies (4.5 days in the current study compared to less than 12 hours in the latter).561
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The lengthy duration enabled multiple regions of the TC with different precipitation char-562

acteristics to pass over the radar.563

The derived DSDs in Florence evolved more gradually than in Harvey, with reduced564

temporal variability but an increase in the medium drops (the ML and MH quadrants) that565

became more prominent after 0600 UTC on 15 September. The high number concentra-566

tion DSDs (the SH and MH quadrants) have the greatest coverage, but the MH quadrant567

is less frequent than was seen for Harvey. The reduced frequency of the MH quadrant and568

increased frequency in the SH quadrant is due to generally weaker /� and /�' (cf. Fig.569

7a,b) and indicates a general shift to smaller drop sizes over time.570

Comparing the available data from Harvey and Florence reveals broad commonali-571

ties in microphysics of TC rainfall but important differences in the event length and local572

rain intensity. Harvey lingered over Texas for a longer amount of time and radar data indi-573

cate that the heaviest rain rates were more frequent and long-lasting than in Florence. Po-574

larimetric data suggest both storms had a prevalence of small-to-medium sized raindrops575

(≤ 2 mm) in moderate to high concentrations, but there was more temporal variability of576

the DSDs in Harvey than in Florence. We next examine some of the environmental and577

structural features that may have led to these differences.578

5 Discussion581

We hypothesize that several key factors were influential in producing the differences585

in observed rainfall in Harvey and Florence. First, Harvey and Florence had different in-586

tensities during their prolonged rain events. Although intensity does not directly correlate587

with storm structure, Harvey weakened more rapidly than Florence and spent more time as588

a tropical storm (Fig. 12a). At the same time, the vertical wind shear surrounding Harvey589

was stronger than for Florence, which is known to produce azimuthal variations in precip-590

itation. Deep-layer shear impacts vertical motion, and thus rainfall, in part by tilting the591

vortex. Vortex tilt induces a wavenumber-1 asymmetry of potential temperature, leading592

to persistent anomalies of isentropic ascent and descent (Jones [1995]). In addition, deep-593

layer shear imposes a wavenumber-1 pattern of radial flow and vorticity advection, which594

is roughly balanced by vortex compression or stretching (Bender [1997]).595

As a weak storm under strong shear, Harvey was more asymmetric and disorganized.599

Initially, the strongest precipitation was found within convective outer rainbands that im-600
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pacted the Houston metropolitan region (Fig. 13a). The intense rainbands in Harvey share601

some similarities with the typhoon rainbands studied by Wang et al. [2016] and Wu et al.602

[2018] that indicated a prevalence of larger drops associated with stronger, deeper convec-603

tive precipitation associated with ’outer’ rainbands (Yu and Tsai [2013]; Tang et al. [2014];604

Tang et al. [2018]). One day later, hours after the center of Harvey reentered the Gulf of605

Mexico, precipitation weakened and became more scattered (Fig. 13b). As Harvey moved606

northeast, the precipitation strengthened and became more uniform (Fig. 13c). Finally,607

as the center of Harvey moved into Louisiana, the echo area was restricted to the region608

surrounding Beaumont, TX; the reduced echo area and higher reflectivity (Fig. 13d) were609

associated with the resurgence of the heavy rain PID category and stronger polarimetric610

variables on 30 August (cf. Figs. 2 and 3). Another notable feature in Harvey was the611

relative lack of precipitation offshore. This structure suggests a strong influence of both612

onshore flow and persistent southwesterly shear. Under this shear orientation, southeast613

Texas spent a great deal of time in the downshear quadrants of Harvey, which are often614

characterized by enhanced overall rainfall, convective precipitation near the eyewall, and615

a transition from convective to stratiform precipitation in outer rainbands (Corbosiero and616

Molinari [2002]; DeHart et al. [2014]; Hence and Houze [2011]; Hence and Houze [2012];617

Reasor et al. [2013]).618

In contrast to Harvey’s more asymmetric structure, we hypothesize that a slower de-622

cay rate and weaker shear favored a more resilient and axisymmetric structure for Flo-623

rence. Increased rainfall axisymmetry is expected for stronger storms experiencing weaker624

deep-layer shear (Chen et al. [2006]). The eyewall and rainbands remained well-defined as625

Florence pushed through the KMHX domain (Fig. 14). The heaviest rain in Florence was626

mostly restricted to the eyewall and inner rainbands, with larger areas of weaker reflectiv-627

ity values and non-convective precipitation similar to the inner rainband in Fig. 8b. Unlike628

Harvey, heavy rainfall in Florence did not preferentially occur onshore. Although hints629

of heavier rainfall onshore exist in the eyewall and outer rainband on 14 September (Fig.630

14b), a band of heavier rainfall is present offshore on 15 September (Fig. 14c). Determin-631

ing which structures are due to processes associated with the coastal effects is challenging632

without numerical simulations, and should be a focus of further study.633

During Florence’s landfall, the shear direction veered from southerly to westerly634

through 0000 UTC on 14 September (Fig. 12c), but the shear magnitude remained steady635

around 10 kts through 1800 UTC on 14 September. The concurrent axisymmetric struc-636
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ture suggests that Florence was more resilient to the influence of deep-layer shear. The637

relative axisymmetry of Florence during the slow decay was reflected in the persistent638

fractions of DSD types. The slow increase of large-sized DSDs coincided with Florence’s639

departure from the radar domain as a solitary rainband dominated the remaining precipi-640

tating area (Fig. 14c). Since different TC features exhibit different types of DSDs (Yu and641

Tsai [2013]; Tang et al. [2014]; Wang et al. [2016]; Tang et al. [2018]; Wu et al. [2018]), a642

gradual transition from a regime that includes eyewall, inner rainband, and outer rainband643

rainfall (e.g., 14 September in Fig. 14b) to predominantly outer rainband rainfall likely644

contributes to the changing DSD type fractions. Overall, the polarimetric data suggest that645

strong convection was less widespread in Florence than in Harvey. The stronger TC in-646

tensity and resilience to deep-layer shear are believed to limit the intense convection to647

smaller areas in the eyewall and rainbands compared to the stronger vertical motion forc-648

ing downshear in Harvey.649

Vertical wind shear and intensity are not the only possible factors that could ex-650

plain the difference in precipitation between the two storms. Environmental conditions651

such as dry air, thermodynamic stability, and sea surface temperatures also affect cloud652

morphology and the resulting precipitation. Offshore sea surface temperatures in the Gulf653

of Mexico prior to Harvey were approximately 1°C warmer than offshore temperatures654

for Florence (not shown) and could have increased low-level moisture in Harvey. While655

these factors may also play a role, the contrasting storm structures and consistency with656

expected patterns of precipitation due to vertical wind shear suggest that the combined657

effects of shear and intensity played an important role in the rainfall differences. Fur-658

ther analysis with high-resolution thermodynamic observations and numerical simulations659

would be required to evaluate their relative contributions and are beyond the scope of this660

study.661

6 Conclusions662

In this study, rain gauge and polarimetric radar data were analyzed to better under-663

stand the characteristics of the record-setting rainfall from Hurricanes Harvey (2017) and664

Florence (2018) and to identify microphysical similarities and differences between these665

two storms. From our analysis, we draw the following conclusions:666
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1. Polarimetric data indicated that the microphysical characteristics of both storms667

were not drastically different from the observations in previous tropical cyclones.668

On average, both Harvey and Florence exhibited ‘typical’ tropical cyclone DSDs669

with high concentrations of small-to-medium sized raindrops.670

2. High-concentration, midsize DSDs were more common in Harvey and indicate671

stronger rain rates over a larger area for a longer time period. The dominant DSD672

type (e.g., large #, or �0 DSDs) in Harvey showed substantial variability over673

time. In contrast, inferred DSDs from Florence generally had smaller median diam-674

eters than the DSDs from Harvey and had less variability.675

3. Both the long event duration and strong rain rates were contributing factors to the676

record-breaking rainfall in Harvey, but their relative importance varied spatially.677

The slowly moving center determined the amount of time any one location spent678

in onshore flow and was one of the primary contributors to the frequency of heavy679

rain rates and the record-breaking total accumulated rainfall. In contrast, Florence’s680

more direct track and shorter duration did not produce as distinct a difference in on681

and offshore precipitation or the spatial or temporal variability in intense rain rates.682

4. Stronger vertical wind shear and a more rapid decay in intensity contributed to683

a more asymmetric and disorganized Harvey, whereas weaker wind shear and a684

slower decay in intensity contributed to a more resilient and axisymmetric Florence.685

These factors contribute to overall weaker convection in Florence associated with686

‘inner’ rainbands, while Harvey’s stronger convection more resembled ‘outer’ rain-687

bands.688

It is well-known that slow-moving tropical cyclones are capable of producing ex-689

treme rainfall, but this study further underscores the complexity inherent in tropical cy-690

clone rainfall. Rain rates and the dominant microphysical processes vary sharply over691

short distances, depend on the details of the TC structure, and are influenced by the en-692

vironment. The changing DSDs in Harvey and Florence suggests changes in the relative693

contributions of rain and ice phase processes, consistent with previous TC studies (Wang694

et al. [2016]; Didlake and Kumjian [2017]; Kalina et al. [2017]; Wu et al. [2018]). Abun-695

dant small drops suggest the dominance of warm rain processes, while the presence of696

larger drops suggest more vigorous or deeper convection with more contributions from697

melting graupel to the overall DSD (Wu et al. [2018]). The current results suggest that698

multiple microphysical pathways to heavy rainfall exist within the same TC, and additional699
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research is needed to determine which pathways will dominate in different regions and700

landfall scenarios.701

Understanding the key factors in specific extreme rainfall events can help identify702

commonalities and differences in future extreme events. Recent studies suggest that trop-703

ical cyclone rainfall is expected to increase in a warmer climate, and that climate change704

may have influenced Harvey’s rainfall through increased water vapor, higher ocean heat705

content, or slower storm motion (Emanuel [2017]; van Oldenborgh et al. [2017]; Risser706

and Wehner [2017]; Trenberth et al. [2018]). While the role of climate change in the two707

events presented here is outside the scope of this study, documenting the characteristics708

of their rainfall is crucial to understanding how such characteristics might change in the709

future. In particular, the relative spatial and temporal contributions of various microphysi-710

cal processes to the total rainfall are not fully understood. A specific process might be an711

efficient producer of strong precipitation, but may have a limited impact in the context of712

the full event and area of impact. Concurrent surface, in situ, and remote observations of713

microphysical processes will improve our understanding of and ability to forecast tropical714

cyclone rainfall in the current and future climate.715
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Figure 1. a) Map of Hurricane Harvey rainfall from 0000 UTC on 25 August to 0000 UTC on 31 August,

2017. Circle size is proportional to the square root of the total rainfall, to limit the overlap of station plots.

Within each circle, the lower semicircle (hashed) displays the frequencies and the upper semicircle (solid)

displays the contribution to the total rainfall by intense (green) and light (white) rainfall. Only hours with

measurable rainfall are included. Locations marked by an ’x’ indicate rain gauges missing more than an av-

erage of four observations per day. b) Hourly rainfall time series at KIAH. c) Hourly rainfall time series at

KBPT. Black horizontal line indicates an hourly rain rate of 25 mm h−1, which is used to identify intense rain.

Vertical gray bars indicate missing data.
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Figure 2. a) Map of reflectivity from the 0.5°plan position indicator (PPI) scan from KHGX at 0919 UTC

on 27 August, 2017. Only data within 127 km of KHGX are displayed. The black circles represent the loca-

tion of ASOS rain gauges within 127 km of KHGX. b) As in a), but for the PID categories. c) Hourly time

series of range-weighted counts of rain PID categories. d) As in c), but for the range-weighted fraction.
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Figure 3. Hourly time series of range-weighted fraction of polarimetric variables in specified bins at

KHGX of a) reflectivity (dBZ), b) differential reflectivity (dB), and c) specific differential phase (° km−1).
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Figure 4. a) Map of gridded radar reflectivity data at 1 km altitude within a 32x32 km box surrounding

KIAH at 0421 UTC on 27 August 2017 during Hurricane Harvey. Black dashed box indicates the area over

which the vertical profiles are calculated. b) As in a), but for KBPT at 0431 UTC on 30 August 2017. Black

solid box indicates the area over which the vertical profiles are calculated. c) Vertical profiles of /� near

KIAH (dashed red line) and KBPT (solid black line). Error bars denote the standard deviation at each altitude.

d) As in c), but for /�' . e) As in c), but for  �%
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Figure 5. a) As in Fig. 1, but of Hurricane Florence rainfall from 0000 UTC on 13 September to 0000

UTC on 18 September, 2018. b) Hourly rainfall time series at KMAO. Black horizontal line indicates an

hourly rain rate of 25 mm h−1, which is used to identify intense rain. Vertical gray bars indicate missing data.
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Figure 6. Hourly time series of range-weighted PID categories from KMHX by a) total count, b) fraction.394

Figure 7. As in Fig. 3, but for data from KMHX.403
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Figure 8. a) Map of gridded radar reflectivity data at 1 km altitude within a 32x32 km box surrounding an

outer rainband at 1033 UTC on 14 September 2018 during Hurricane Florence. Black dashed box indicates

the area over which the vertical profiles are calculated. b) As in a), but surrounding an inner rainband. Black

solid box indicates the area over which the vertical profiles are calculated. c) Vertical profiles of /� near the

outer rainband (dashed red line) and inner rainband (solid black line). Error bars denote the standard deviation

at each altitude. d) As in c), but for /�' . e) As in c), but for  �%
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Figure 9. a) Joint probability distribution (contours) of range-weighted #, and �0 values calculated

from the KHGX polarimetric data for Harvey between 0000 UTC on 26 August and 0000 UTC on 31 Au-

gust. Theoretical LWC values (colors) are calculated from Equation 2. Labels indicate the different DSD

quadrants (SL: low-concentration small drops, ML: low-concentration medium drops, SH: high-concentration

small drops, and MH: high-concentration medium drops). b) As in a), but for data from KMHX for Florence

between 0000 UTC on 13 September and 1922 UTC on 15 September, when the radar went offline and c)

the difference joint probability distribution between Florence/KMHX and Harvey/KHGX (dashed contours

indicate frequencies were greater for KHGX).
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Figure 10. As in Fig. 3, but for the estimated a) �0 (mm), b) #, (m−3 mm−1), and c) #, , �0 quadrants

defined in Fig. 9 for data from Harvey (2017).
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Figure 11. As in Fig. 7, but for the estimated a) �0 (mm), b) #, (m−3 mm−1), and c) #, , �0 quadrants

defined in Fig. 9 for data from Florence (2018).
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Figure 12. Time series of a) storm intensity (kts), b) deep-layer wind shear magnitude (kts), and c) deep

layer wind shear heading (°) for Harvey (black) and Florence (blue). Label of Day 1 corresponds to 26 August

and 13 September for Harvey and Florence, respectively.
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Figure 13. Map of reflectivity from the 0.5°PPI scan from KHGX at a) 1002 UTC on 27 August, b) 1503

UTC on 28 August, c) 1200 UTC on 29 August, and d) 0236 UTC on 30 August. Only data within 127 km of

KHGX are displayed.
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Figure 14. Map of reflectivity from the 0.5°PPI scan from KMHX at a) 1804 UTC on 13 September, b)

1200 UTC on 14 September, and c) 1004 UTC on 15 September. Only data within 127 km of KMHX are

displayed. displayed.
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