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The increasing variability of tropical 
cyclone lifetime maximum intensity
Jinjie Song1,2,3, Philip J. Klotzbach4, Jianping Tang   2 & Yuan Wang1,2

This study investigates long-term changes in the variability of TC intensity of global tropical cyclones, a 
topic which has been relatively infrequently studied to date. Our study finds that the variability of global 
TC lifetime maximum intensity (LMI), as measured by the LMI standard deviation, increases during 
1981–2016. The increasing trend in LMI variability is statistically significant for both the Northern and 
Southern Hemispheres, with three individual TC basins: the western North Pacific, the South Indian and 
the South Pacific also having statistically significant increases. This increasing trend primarily results 
from distinct changes in the relative percentages of TCs with different intensities. When comparing 
two periods: 1981–1998 and 1999–2016, the proportions of weak and strong TCs increase, whereas 
moderate TCs occur relatively less frequently. This bimodal pattern of observed LMI distribution change 
is further linked to opposite trends in the average intensities of TCs that undergo rapid intensification 
(RI) during their lifetime (RI TCs) and those that do not (non-RI TCs). The LMI distributions of RI and 
non-RI TCs migrate to higher and lower intensities, respectively. Our results demonstrate from an 
observational perspective that strong TCs have strengthened while weak TCs have weakened as the 
global climate has warmed since 1981.

The influence of climate change on tropical cyclone (TC) activity has generated considerable scientific attention 
during the past ~20 years1–3. A majority of modelling studies estimate a decrease in the total frequency of global 
TCs accompanied by an increase in the average number of intense TCs in response to anthropogenic global 
warming2,4,5. This anticipates a future increasing tendency in the average intensity of global TCs, which is consist-
ent with significant increasing trends in both the mean lifetime maximum intensity (LMI) of TCs and the inten-
sity of the strongest TCs derived from historical satellite-based temporally homogenized datasets6–11]. By contrast, 
a few publications project increasing TC frequency12,13. Due to the lack of theoretical understanding of storm 
occurrence3,8, there is greater inconsistency in projections of future TC frequency than intensity. It also remains 
uncertain how global warming affects changes in LMI variability for global TCs as well as individual basin TCs. 
This uncertainty can influence both the verification of TC simulations in climate models and the prediction of TC 
activities in different intensity categories.

LMI variability is primarily determined by the probability density function (PDF) of LMI, serving as a fun-
damental feature of the TC climatology7,14. There exists a bimodal pattern of storm LMI PDFs over the globe as 
well as for individual TC basins7,13,15–17. Two peaks in the PDF are separately related to LMI distributions of TCs 
that undergo rapid intensification (RI) during their lifetime (RI TCs) and TCs that do not (non-RI TCs)17. In 
several modeling studies, both the overall LMI distribution and the peak of the LMI PDF are skewed to higher 
intensities in a warmer climate, which induces an increasing and decreasing proportion of strong and weak TCs, 
respectively18–26. This change could significantly modulate the LMI mean but also influence the LMI variance. In 
contrast, a few climate models represent a more complex change in the LMI PDF under high-CO2 conditions27,28. 
Although the majority of the LMI PDFs are shifted to higher intensities in warmer scenarios, the relative fre-
quency of weak TCs also increased in some simulations27,28. However, this feature was rarely discussed in the liter-
ature, perhaps because there exists a great deal of disagreement as to the definition of weak TCs in climate model 
outputs. Since TCs in climate models are usually defined by objective tracking algorithms, the identified storm 
activity is highly sensitive to the specific thresholds in tracking techniques from different modeling studies which 
utilize different models and may have different model resolutions29,30. Compared with strong TCs, it is harder to 
correctly identify weak TCs using various tracking methods in climate models, which results from the challenges 
involved in separating weak TCs from disturbances and waves. Due to these uncertainties, modeled activity of 
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weak TCs is not discussed as extensively as that of strong TCs in most previous studies. Moreover, compared with 
modeling studies, there have been few publications on the observed changes of the PDF of LMI. Many modeling 
papers utilize the observed LMI PDF to verify their historical simulations and then project future changes in the 
simulated LMI PDF (e.g. ref.13).

In this study, we utilize TC LMI records from the National Hurricane Center (NHC)31 and the Joint Typhoon 
Warning Center (JTWC)32 as archived in the International Best Track Archive for Climate Stewardship 
(IBTrACS)33 v03r10. We use data during the satellite era (1981–2016) to investigate the potential long-term trend 
in TC LMI variability, which is measured by the standard deviation (STD) of the annual LMI sample. We find that 
there exist significant increasing trends in the annual TC LMI STD over the globe as well as for some individual 
basins. These trends are primarily caused by differences in the LMI PDF between the two sub-periods (1999–2016 
minus 1981–1998), which represents a bimodal pattern with two peaks occurring at higher and lower intensities. 
Furthermore, the different trends in annual averaged intensities of RI TCs and non-RI TCs are responsible for 
the bimodality of the distribution of the LMI PDF change. Here RI is defined as an increase of at least 30 kt in TC 
intensity within a period of 24 h or less34,35.

Results
Increasing variability of TC LMI.  When the annual STD of LMI is computed from the IBTrACS data dur-
ing 1981–2016, a significant upward trend is represented over the globe, with an increasing rate of 0.22 kt yr−1 
(Fig. 1a). There are also significant increasing trends in the annual LMI STDs over both hemispheres (Fig. 1b,c), 
with the rate in the Southern Hemisphere (SH) being much larger than that in the Northern Hemisphere (NH). 
All individual ocean basins make positive contributions to the hemispheric trends (Extended Fig. 1), which indi-
cates that the increasing LMI STD is a global phenomenon. However, there are considerable differences in both 
the trend amplitudes and statistical significance levels for individual TC basins. The increasing trend in LMI STD 
is most significant over the western North Pacific (WP). Since this is the basin with the most storm occurrences, 
the WP is the greatest contributor to the NH trend in LMI STD. Although the increasing LMI STD rate over the 
North Indian Ocean (NI) is greater than that over the WP, it is not statistically significant due to the large varia-
bility in interannual variations of the LMI STD. By comparison, there are only slightly increasing trends in LMI 
STD over the North Atlantic (NA) and the eastern North Pacific (EP). The South Indian Ocean (SI) and the South 

Figure 1.  Increasing variability in TC LMI. Time series of annual STD and half IQR of TC LMI from 1981 
to 2016 and associated linear trend lines over the globe (a), the Northern Hemisphere (b) and the Southern 
Hemisphere (c). Blue and red lines refer to the STD and half IQR, respectively. The slope of the trend line and its 
significance level are shown in the plots.
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Pacific (SP) both exhibit a significant increasing LMI STD trend, with both basins contributing approximately 
equally to the SH trend. The largest increasing trend among any of the individual TC basins is found over the SP 
(0.42 kt yr−1).

To verify the robustness and reliability of the aforementioned trends in TC LMI variability, the interquartile 
range (IQR) is applied here to provide descriptive statistics for skewed distributions as the LMI PDF. There are 
significant increasing trends of LMI IQR from 1981 to 2016 for the globe, with a rate of 0.48 kt yr−1 that is about 
twice the LMI STD trend (Fig. 1a). Similar to the LMI STD, both hemispheric LMI IQRs exhibit significant 
increasing tendencies (Fig. 1b,c), while the LMI IQR over the WP, SI and SP also increases significantly (Extended 
Fig. 1). We also investigate TC best tracks from the World Meteorological Organization (WMO)-sanctioned fore-
cast agencies instead of the JTWC for the WP, NI, SI and SP to test the sensitivity of the data sources used. Despite 
having smaller trends compared to IBTrACS-JTWC, there exist significant increasing tendencies of LMI STD and 
IQR in IBTrACS-WMO between 1981 and 2016 (Extended Fig. 2).

Relationship to the LMI PDF change.  The STD of LMI is very sensitive to its PDF, with a flatter (steeper) 
distribution corresponding to a larger (smaller) STD. The increasing LMI STD is primarily caused by the LMI 
PDF becoming flatter, which is shown as the LMI PDF difference between 1981–1998 and 1999–2016 (Fig. 2). 

Figure 2.  TC LMI distributions and their changes. Grey bars in (a–c) represent the raw PDF differences 
between 1981–1998 and 1999–2016 in 5-kt bins, while black, blue and red solid lines refer to the smoothed PDF 
differences over the globe (a), the Northern Hemisphere (b) and the Southern Hemisphere (c), respectively. 
The smoothed lines are obtained by a 5-point low-pass Gaussian filter. The dashed and solid lines in (d–f) 
refer to LMI PDFs in 1981–1998 and 1999–2016 over the globe (d), the Northern Hemisphere (e) and the 
Southern Hemisphere (f). The positive and negative LMI PDF changes are shown by red and blue areas in (d–f), 
respectively.
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The smoothed global distribution of the LMI PDF change exhibits a bimodal pattern, with two maxima at 35 kt 
and 135 kt and a minimum at 95 kt (Fig. 2a). This means that the weakest and strongest TCs around the globe 
have occurred more frequently in 1999–2016 than in 1981–1998. There has also been a relative reduction in the 
proportion of moderate TCs around the globe. Note that numerous previous studies have indicated an increas-
ing proportion of strong TCs (e.g. ref.36), whereas there is great uncertainty in the trends related to weak TCs in 
climate projections. Bimodal patterns are also seen in the LMI PDF changes over the NH and SH, although the 
peaks of the distributions are somewhat different between the hemispheres (Fig. 2b,c). Moreover, the smoothed 
basin distributions of LMI PDF changes are bimodal in most basins except in the SI which exhibits a decreas-
ing proportion of the weakest TCs (Extended Fig. 3), despite some regional differences in the details. Generally 
speaking, positive and negative LMI PDF differences can be separated at around 50 kt and 100 kt, indicating that 
weak tropical storms and category 3–5 TCs are occurring relatively more frequently than strong tropical storms 
and category 1–2 TCs. Hereafter, weak and strong TCs refer to storms with LMI lower than 50 kt and greater than 
100 kt, respectively, while TCs between 50–100 kt are defined as moderate TCs. Note that the bimodal feature 
in LMI PDF changes was also reported in the comparison of the numbers of simulated NA storm occurrences 
between control and warmed climates28 and the probability density difference of modelled EP and WP storm 
intensities between different emission scenarios37. The observed bimodality of the LMI PDF change is consistent 
with what would be expected from the TC response to anthropogenic warming.

Relationship with RI and non-RI TCs.  There are distinct LMI PDFs for RI TCs and non-RI TCs, which 
constitute a bimodal structure of the LMI PDF for all TCs13,17. When the annual LMI averages in the period 
of 1981–2016 are calculated for different TC groups (Fig. 3a,c), opposite trends are represented in global 
annual-averaged LMI of RI TCs and non-RI TCs. The averaged LMI of RI storms significantly increases at a rate 
of 0.21 kt yr−1, whereas the mean LMI of non-RI storms exhibits a significant decrease of −0.23 kt yr−1. Because 
RI storms on average are more intense than non-RI storms, the above trends indicate that the strong TCs have 
become stronger, while the weak TCs have gotten weaker. Furthermore, these trends are consistent with the LMI 
PDF changes between 1981–1998 and 1999–2016 (Fig. 3b,d). The LMI PDF of non-RI storms migrates to lower 
intensities, with the largest positive and negative changes at 35 kt and 95 kt, respectively. In contrast, the LMI PDF 

Figure 3.  Annual averaged LMI variations and LMI PDF changes for RI and non-RI TCs. (a,b) and (c,d) Refer 
to RI storms and non-RI storms, respectively. In (a) and (c), dashed lines indicate linear trends from 1981 to 
2016, with the rates and associated significance levels displayed in the corners of the plots. In (b,d), 5 kt-binned 
gray bars are raw LMI PDF differences between 1981–1998 and 1999–2016, while solid lines are smoothed by a 
5-point low-pass Gaussian filter.
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of RI storms skews to higher intensities, resulting in the largest positive and negative differences occurring at 
135 kt and 95 kt, respectively. These unimodal patterns of LMI PDF changes for RI TCs and non-RI TCs exhibit 
consistent signals for individual basins, with the exception of the SI (Extended Fig. 4). The different change in 
LMI PDF over the SI may be attributed to the change of the satellite viewing angle in 1998, when the Meteosat-5 
was repositioned over the Indian Ocean7. The unimodal distribution change for RI storms and non-RI storms 
constitutes the bimodal pattern of the LMI PDF change for all TCs.

Discussion
The increasing variability of TC LMI, which is displayed as the upward trend in the annual STD of TC LMI, is 
mainly linked to changes in the TC LMI PDF. The greater proportion of the weakest and strongest TCs to the 
full TC distribution makes the LMI distribution flatter (Fig. 2d–f), inducing the increasing uncertainty of storm 
LMI in a warming climate. This bimodal change in the LMI PDF is not only a global phenomenon but also rep-
resented in almost all TC basins, which is consistent with several climate modeling results over individual TC 
basins28,37. Our findings are in disagreement with several studies that have investigated the effect of anthropogenic 
warming on global TC activity through numerical simulations and reported a migration of TC LMI as a whole 
to higher intensities18,20–22,24–26. The primary reason for the disagreement likely results from the detection and 
tracking methods used for identifying simulated storms in climate models29. It is very common to apply a relative 
humidity, sea level pressure or relative vorticity threshold to distinguish storms from cyclonic perturbations in 
model outputs18,20–22,24–26. These thresholds are dependent on the model resolution, with low thresholds applied 
to track TCs in low-resolution models29,38. However, the systems being identified may not be TCs if too low of a 
threshold is used. To reduce the uncertainty in identifying modeled weak TCs, these studies did not focus on the 
projections related to weak TCs. Moreover, as mentioned by refs29,30, the higher sensitivity of tracking thresholds 
for weaker TCs is reduced as the model resolution increases. As a benefit of these high-resolution models, the 
identifying thresholds used in the models are similar to observations, which can eliminate the uncertainty related 
to threshold values.

Our study further related the bimodal pattern of the LMI PDF change to the different trends in the annual 
averaged LMI of RI and non-RI storms. RI (non-RI) storms, which usually exhibit stronger (weaker) intensities, 
have become increasingly stronger (weaker) during the past two decades. These observed trends are in agreement 
with ref.39, which found, through investigation of the work output of the atmospheric heat engine, that global 
warming would not induce an overall increasingly stormy atmosphere. It was anticipated that strong storms 
would become stronger, but weak storms would become weaker. This feature was related to changes in upward 
motions of different intensities, which showed that in a warming scenario, air masses that could reach the top of 
the atmosphere were enhanced, whereas those that could not were reduced39.

Another mechanism associated with intensity changes of relatively strong and weak TCs is linked to the pole-
ward migration of storm activity40–42. In general, TCs generated at lower latitudes can reach greater peak inten-
sities due to a longer time spent in a conducive environment (e.g., warm sea surface temperatures, low vertical 
wind shear, high mid-level moisture), whereas TCs forming at higher latitudes typically do not achieve as high 
intensities due to reduced sea surface temperature and enhanced vertical wind shear. Here we take the WP which 
exhibits the most significant poleward shift of storm tracks and examine trends in the annual averages of WP 
TC genesis location for RI and non-RI storms (Extended Fig. 5). The significant poleward migration in genesis 
latitudes of non-RI storms is likely responsible for their significant decreasing intensities. By contrast, there is no 
significant trend in the latitudinal location for RI storm formation. The strengthening of RI storms is possibly 
linked to more favorable conditions for tropical development in response to global warming. In other words, the 
formation position of weak TCs has migrated to higher latitudes, whereas there has not been a latitudinal shift in 
where strong TCs form. These findings are consistent with weak storms dominating the poleward migration of 
LMI over the WP43.

In addition to physical changes, the trend in weak TC proportion can be induced by temporal inhomogenei-
ties in the best-track data. The evolution of TC observing platforms and improved tracking methodologies may 
allow for increased observations of weak TCs.

What causes the different LMI trends of RI and non-RI TCs in individual ocean basins remains an open ques-
tion. Instead of attempting to answer this question for each individual basin, we highlight the non-uniformity 
of TC LMI PDF changes for anthropogenic warming. These changes further induce increasing variability in TC 
LMI, which consequently shows an increasingly uncertain behavior in TC intensity. Our results illustrate an 
increasing proportion of weak TCs, which can provide observations to verify the simulated activity of weak TCs 
in climate models and to improve tracking algorithms on identifying weak TCs. The simulation of weak TC activ-
ity as well as the reanalysis of temporal homogeneous best tracks is an important research issue when it comes to 
improved understanding of the future impacts of anthropogenic warming on TC frequency and intensity.

Methods
Data.  TC best-track data are available at https://www.ncdc.noaa.gov/ibtracs/. In order to have one-minute 
sustained wind estimates for all TC basins, we primarily consider data provided by the National Hurricane Center 
(NHC)31 and the Joint Typhoon Warming Center (JTWC)32 (hereafter, IBTrACS-JTWC). For comparison, we 
also utilize data from the World Meteorological Organization (WMO)-sanctioned forecast agencies for basins 
outside of the North Atlantic and the eastern North Pacific, which are listed as IBTrACS-WMO.

LMI.  The LMI is defined as the peak one-minute maximum sustained wind achieved by a TC during its life-
time. Only storms with an LMI greater than 34 kt are considered in our study in order to minimize possible 
influences of the temporal evolution of observational technologies for tropical depressions44,45. The percentages 
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of global TCs with a duration less than 24 h and 48 h are 5.7% and 12.4% during 1981–2016, respectively. Our 
results are not significantly impacted when excluding TCs with a lifetime shorter than 24 h and 48 h, respectively.

Trends.  The trends of time series are obtained using linear least-squares. Two-tailed Student t-tests are applied 
to calculate significance levels. Total global TC numbers average ~85 TCs per year, while those for the Northern 
Hemisphere and South Hemisphere average around 60 and 25 TCs, respectively.

LMI PDF and its change.  The LMI PDF is defined as the percentage distribution of storm LMI in the near-
est 5-kt bins. The LMI PDF change refers to the difference between the LMI PDFs in 1981–1998 and 1999–2016.
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